开放期刊系统

基于加权基因共表达网络分析鉴定 2 型糖尿病枢纽基因

谭 铨广, 张 东然, 黄淑 兰*

摘要

目的:利用生物信息学技术筛选 2 型糖尿病(T2DM)枢纽基因。方法:从 GEO 数据库下载 T2DM 相关芯片
GSE20966,筛选差异表达基因(DEGs),通过加权基因共表达网络(WGCNA)分析基因与临床性状的关系,获取关键
DEGs 并进行功能富集。采用 LASSO 回归筛选枢纽基因,并绘制 ROC 曲线评估诊断效能。结果:共鉴定 209 个 DEGs,
其中 157 个上调、52 个下调。WGCNA 显示黄色模块与 T2DM 最相关(r=0.69, P=0.001)。交集获得 59 个关键 DEGs,
GO 和 KEGG 富集分析显示其主要参与转运、细胞外区域、胰腺分泌等过程。LASSO 回归筛选出 7 个枢纽基因(MDFIC、
EFHD2、LMBRD2、GALNT14、IGFBP3、KCNG3、GPR116),ROC 曲线 AUC=0.96,显示良好诊断效能。结论:这 7
个基因有望作为 T2DM 的新型诊断标志物和治疗靶点。

关键词

2 型糖尿病;生物信息学;枢纽基因

全文:

PDF

参考

[1] 中华医学会糖尿病学分会,朱大龙,郭立新 . 中国糖

尿病防治指南(2024 版)[J]. 中华糖尿病杂志,2025,17(1):

16- 139.

[2] 刘月,管敏鑫,陈烨,等 . 线粒体基因突变相关的

糖尿病研究进展[J]. 基因组学与应用生物学,2017,36(11):

4562-4569.

[3]Ahmad E, Lim S, Lamptey R, et al. Type 2 diabetes[J].

Lancet, 2022,400(10365):1803-1820.

[4].Mulvey LPA, May MR, Brown JM, Höhna S, Wright AM,

Warnock RCM. Assessing the Adequacy of Morphological Models

Using Posterior Predictive Simulations. Syst Biol. 2025;74(1):34-52

[5]Li J, Yan N, Li X, He S, Yu X. Identification and

analysis of hub genes of hypoxia-immunity in type 2 diabetes

mellitus. Front Genet. 2023;14:1154839. Published 2023 Apr 21.

doi:10.3389/fgene.2023.1154839

[6]Zhang YD, Chen YR, Zhang W, Tang BQ. Assessing

prospective molecular biomarkers and functional pathways

in severe asthma based on a machine learning method and

bioinformatics analyses.J Asthma. 2025;62(3):465-480.

[7]Kanehisa M, Furumichi M, Sato Y, Kawashima

M, Ishiguro-Watanabe M. KEGG for taxonomy-based

analysis of pathways and genomes.Nucleic Acids Res.

2023;51(D1):D587-D592.

[8]Zhang X, Jiang W, Zhao H (2024) Integration of expression

QTLs with fine mapping via SuSiE. PLOS Genetics 20(1):

e1010929.

[9]Alhamzawi R, Ali H. The Bayesian adaptive lasso

regression[J]. Math Biosci, 2018,303:75-82.

[10]Li J, Yan N, Li X, et al. Identification and analysis of

hub genes of hypoxia-immunity in type 2 diabetes mellitus[J].

Frontiers in Genetics, 2023,14.

[11]Ding L, Fan L, Xu X, et al. Identification of core genes

and pathways in type 2 diabetes mellitus by bioinformatics

analysis[J]. Molecular medicine reports, 2019,20(3):2597-2608.

[12]Fu JT, Liu J, Wu WB, et al. Targeting EFHD2

inhibits interferon-γ signaling and ameliorates non-alcoholic

steatohepatitis. J Hepatol. 2024;81(3):389-403.

[13]Wang Z B, Zhang S, Li Y, et al. LY333531, a PKCbeta

inhibitor, attenuates glomerular endothelial cell apoptosis in the

early stage of mouse diabetic nephropathy via down-regulating

swiprosin-1[J]. Acta Pharmacol Sin, 2017,38(7):1009-1023.

[14]Wang R M, Wang Z B, Wang Y, et al. Swiprosin-1

Promotes Mitochondria-Dependent Apoptosis of Glomerular

Podocytes via P38 MAPK Pathway in Early-Stage Diabetic

Nephropathy[J]. Cell Physiol Biochem, 2018,45(3):899-916.

[15]Cakir B, Hellström W, Tomita Y, et al. IGF1, serum

glucose, and retinopathy of prematurity in extremely preterm

infants. JCI Insight. 2020;5(19):e140363. Published 2020 Oct 2.

doi:10.1172/jci.insight.140363

[16]Yang J, He Q, Wang Y, et al. Gegen Qinlian Decoction

ameliorates type 2 diabetes osteoporosis via IGFBP3/MAPK/

NFATc1 signaling pathway based on cytokine antibody array[J].

Phytomedicine, 2022,94:153810.

[17]Kang H, Fichna J, Matlawska-Wasowska K, et al. The

Expression Pattern of Adhesion G Protein-Coupled Receptor F5

Is Related to Cell Adhesion and Metastatic Pathways in Colorectal

Cancer—Comprehensive Study Based on In Silico Analysis[J].

Cells, 2022,11(23):3876.

[18]Georgiadi A, Lopez-Salazar V, Merahbi R E, et al.

Orphan GPR116 mediates the insulin sensitizing effects of the

hepatokine FNDC4 in adipose tissue[J]. Nature Communications,

2021,12(1).

[19]Oakley R H, Busillo J M, Cidlowski J A. Cross-talk

between the glucocorticoid receptor and MyoD family inhibitor

domain-containing protein provides a new mechanism for

generating tissue-specific responses to glucocorticoids[J]. The

Journal of biological chemistry, 2017,292(14):5825-5844.

[20]Zhou Z, Ma X, Lin Y, et al. MyoD-family inhibitor

proteins act as auxiliary subunits of Piezo channels[J]. Science,

2023,381(6659):799-804.

[21]Aberle J, Lautenbach A, Meyhofer S, et al. Obesity

and Diabetes[J]. Exp Clin Endocrinol Diabetes, 2021,129(S

01):S44-S51.

[22]Malhotra A, Ziegler A, Shu L, et al. De novo missense

variants inLMBRD2 are associated with developmental and motor

delays, brain structure abnormalities and dysmorphic features[J].

Journal of Medical Genetics, 2021,58(10):712-716.

[23]Ekman Ryding A. A new approach to treat type 2

diabetes –Targeting a non-insulin dependent pathway[J]. Drug

Discovery Today, 2021,26(11):2487-2488.

[24] 吕依侣 , 张红飞 , 张伟 . GALNT14 与肿瘤 [J]. 中国

生物化学与分子生物学报 , 2019,35(01):7-12.

[25]Li H W, Liu M B, Jiang X, et al. GALNT14 regulates

ferroptosis and apoptosis of ovarian cancer through theEGFR/

mTOR pathway[J]. Future Oncol, 2022,18(2):149-161.

[26]O Donnell A M, Nakamura H, Tomuschat C, et al.

Altered expression of KCNG3 and KCNG4 in Hirschsprung’s

disease[J]. Pediatric Surgery International, 2019,35(2):193-197.


(0 摘要 Views, 0 PDF Downloads)

Refbacks

  • 当前没有refback。