microRNAs 在糖尿病视网膜病变新生血管形成的相关研究进展
摘要
机制仍不完全清楚。近年研究发现 microRNAs(miRNAs) 作为糖尿病视网膜病变 VEGF 表达的关键因子,miRNAs 通过
VEGF/JAK2/STAT3 信号通路在糖尿病视网膜新生血管形成中起调控作用。miRNA 已被提出作为 DR 筛查的生物标志物,
同时 miRNA 有可能成为新的 DR 治疗方法。本文综述 miRNA 及其通过 JAK2/STAT3 信号通路在 DR 新生血管形成的作用,
为临床提供一种新的防治策略。
关键词
全文:
PDF参考
[1] T. Xu, B. Wang, H. Liu, H. Wang, P. Yin, W. Dong, J.
Li, Y.X. Wang, M. Yusufu, P. Briant, N. Reinig, C. Ashbaugh, J.
Adelson, T. Vos, R. Bourne, N. Wang, and M. Zhou, Prevalence
and causes of vision loss in China from 1990 to 2019: findings
from the Global Burden of Disease Study 2019. Lancet Public
Health 5 (2020) e682-e691.
[2] 雒文娟 , 于麦霞 , 董文萍 . 糖尿病性视网膜病变发病
相关非编码 RNAs 的研究进展 [J/OL]. 医学信息 ,1-6[2024-
08-28].
[3] S.D. Solomon, E. Chew, E.J. Duh, L. Sobrin, J.K. Sun,
B.L. VanderBeek, C.C. Wykoff, and T.W. Gardner, Diabetic
Retinopathy: A Position Statement by the American Diabetes
Association. Diabetes Care 40 (2017) 412-418.
[4] T.Y. Wong, J. Sun, R. Kawasaki, P. Ruamviboonsuk,
N. Gupta, V.C. Lansingh, M. Maia, W. Mathenge, S. Moreker,
M.M.K. Muqit, S. Resnikoff, J. Verdaguer, P. Zhao, F. Ferris, L.P.
Aiello, and H.R. Taylor, Guidelines on Diabetic Eye Care: The
International Council of Ophthalmology Recommendations for
Screening, Follow-up, Referral, and Treatment Based on Resource
Settings. Ophthalmology 125 (2018) 1608-1622.
[5] J. Lechner, O.E. O’Leary, and A.W. Stitt, The pathology
associated with diabetic retinopathy. Vision Res 139 (2017) 7-14.
[6] Q. Kang, and C. Yang, Oxidative stress and diabetic
retinopathy: Molecular mechanisms, pathogenetic role and
therapeutic implications. Redox Biol 37 (2020) 101799.
[7] A.N. Kollias, and M.W. Ulbig, Diabetic retinopathy: Early
diagnosis and effective treatment. Dtsch Arztebl Int 107 (2010)
75-83; quiz 84.
[8] S. Chaudhary, J. Zaveri, and N. Becker, Proliferative
diabetic retinopathy (PDR). Dis Mon 67 (2021) 101140.
[9] 李 宝 花 , 亢 泽 峰 , 侯 昕 玥 , 等 .PI3K/AKT 通 路
在 糖 尿 病 视 网 膜 病 变 中 的 调 控 作 用 [J]. 国 际 眼 科 杂
志 ,2024,24(09):1426-1431.
[10] Y. He, Y. Dan, X. Gao, L. Huang, H. Lv, and J. Chen,
DNMT1-mediated lncRNA MEG3 methylation accelerates
endothelial-mesenchymal transition in diabetic retinopathy
through the PI3K/Akt/mTOR signaling pathway. Am J Physiol
Endocrinol Metab 320 (2021) E598-e608.
[11] A.J. Duraisamy, M. Mishra, A. Kowluru, and R.A.
Kowluru, Epigenetics and Regulation of Oxidative Stress in
Diabetic Retinopathy. Invest Ophthalmol Vis Sci 59 (2018) 4831-
4840.
[12] K. Becker, H. Klein, E. Simon, C. Viollet, C. Haslinger,
G. Leparc, C. Schultheis, V. Chong, M.H. Kuehn, F. FernandezAlbert, and R.A. Bakker, In-depth transcriptomic analysis of
human retina reveals molecular mechanisms underlying diabetic
retinopathy. Sci Rep 11 (2021) 10494.
[13] X. Li, Z.W. Yu, Y. Wang, Y.H. Fu, and X.Y. Gao,
MicroRNAs: Potential Targets in Diabetic Retinopathy. Horm
Metab Res 52 (2020) 142-148.
[14] F. Gui, Z. You, S. Fu, H. Wu, and Y. Zhang, Endothelial
Dysfunction in Diabetic Retinopathy. Front Endocrinol (Lausanne)
11 (2020) 591.
[15] X. Zhao, F. Ling, G.W. Zhang, N. Yu, J. Yang, and
X.Y. Xin, The Correlation Between MicroRNAs and Diabetic
Retinopathy. Front Immunol 13 (2022) 941982.
[16] A. Milluzzo, A. Maugeri, M. Barchitta, L. Sciacca, and A.
Agodi, Epigenetic Mechanisms in Type 2 Diabetes Retinopathy: A
Systematic Review. Int J Mol Sci 22 (2021).
[17] C.H. Liu, S. Huang, W.R. Britton, and J. Chen,
MicroRNAs in Vascular Eye Diseases. Int J Mol Sci 21 (2020).
[18] D. Shao, S. He, Z. Ye, X. Zhu, W. Sun, W. Fu, T. Ma,
and Z. Li, Identification of potential molecular targets associated
with proliferative diabetic retinopathy. BMC Ophthalmol 20 (2020)
143.
[19] Q. Gong, J. Xie, Y. Liu, Y. Li, and G. Su, Differentially
Expressed MicroRNAs in the Development of Early Diabetic
Retinopathy. J Diabetes Res 2017 (2017) 4727942.
[20] M.U. Kaikkonen, P. Halonen, O.H. Liu, T.A. Turunen,
J. Pajula, P. Moreau, I. Selvarajan, T. Tuomainen, E. Aavik, P.
Tavi, and S. Yl-Herttuala, Genome-Wide Dynamics of Nascent
Noncoding RNA Transcription in Porcine Heart After Myocardial
Infarction. Circ Cardiovasc Genet 10 (2017).
[21] A.R. Gomaa, E.T. Elsayed, and R.F. Moftah,
MicroRNA-200b Expression in the Vitreous Humor of Patients
with Proliferative Diabetic Retinopathy. Ophthalmic Res 58 (2017)
168-175.
[22] R. Haque, E.H. Hur, A.N. Farrell, P.M. Iuvone, and J.C.
Howell, MicroRNA-152 represses VEGF and TGFβ1 expressions
through post-transcriptional inhibition of (Pro)renin receptor in
human retinal endothelial cells. Mol Vis 21 (2015) 224-35.
[23] C.B.M. Platania, R. Maisto, M.C. Trotta, M. D’Amico,
S. Rossi, C. Gesualdo, G. D’Amico, C. Balta, H. Herman, A.
Hermenean, F. Ferraraccio, I. Panarese, F. Drago, and C. Bucolo,
Retinal and circulating miRNA expression patterns in diabetic
retinopathy: An in silico and in vivo approach. Br J Pharmacol 176
(2019) 2179-2194.
[24] F. Huang, J. Bai, J. Zhang, D. Yang, H. Fan, L. Huang,
T. Shi, and G. Lu, Identification of potential diagnostic biomarkers
for pneumonia caused by adenovirus infection in children by
screening serum exosomal microRNAs. Mol Med Rep 19 (2019)
4306-4314.
[25] A. Raghunath, and E. Perumal, Micro-RNAs and their
roles in eye disorders. Ophthalmic Res 53 (2015) 169-86.
[26] P. Kantharidis, B. Wang, R.M. Carew, and H.Y. Lan,
Diabetes complications: the microRNA perspective. Diabetes 60
(2011) 1832-7.
[27] J. Friedrich, D.H.W. Steel, R.O. Schlingemann, M.J.
Koss, H.P. Hammes, G. Krenning, and I. Klaassen, microRNA
Expression Profile in the Vitreous of Proliferative Diabetic
Retinopathy Patients and Differences from Patients Treated with
Anti-VEGF Therapy. Transl Vis Sci Technol 9 (2020) 16.
[28] D. Ye, T. Zhang, G. Lou, W. Xu, F. Dong, G. Chen, and
Y. Liu, Plasma miR-17, miR-20a, miR-20b and miR-122 as
potential biomarkers for diagnosis of NAFLD in type 2 diabetes
mellitus patients. Life Sci 208 (2018) 201-207.
[29] C. Yin, X. Lin, Y. Sun, and X. Ji, Dysregulation of
miR-210 is involved in the development of diabetic retinopathy
and serves a regulatory role in retinal vascular endothelial cell
proliferation. Eur J Med Res 25 (2020) 20.
[30] Z. Smit-McBride, A.T. Nguyen, A.K. Yu, S.P.
Modjtahedi, A.A. Hunter, S. Rashid, E. Moisseiev, and L.S. Morse,
Unique molecular signatures of microRNAs in ocular fluids and
plasma in diabetic retinopathy. PLoS One 15 (2020) e0235541.
[31] C. Wang, Y. Lin, Y. Fu, D. Zhang, and Y. Xin, MiR-
221-3p regulates the microvascular dysfunction in diabetic
retinopathy by targeting TIMP3. Pflugers Arch 472 (2020) 1607-
1618.
[32] L. Zhao, and Q. Pan, Highly-Expressed MiR-221-
3p Distinctly Increases the Incidence of Diabetic Retinopathy in
Patients With Type 2 Diabetes Mellitus. Transl Vis Sci Technol 12
(2023) 17.
[33] L. Li, and S. Li, miR-205-5p inhibits cell migration and
invasion in prostatic carcinoma by targeting ZEB1. Oncol Lett 16
(2018) 1715-1721.
[34] T. Takeno, T. Hasegawa, H. Hasegawa, Y. Ueno, R.
Hamataka, A. Nakajima, J. Okubo, K. Sato, and T. Sakamaki,
MicroRNA-205-5p inhibits three-dimensional spheroid
proliferation of ErbB2-overexpressing breast epithelial cells
through direct targeting of CLCN3. PeerJ 7 (2019) e7799.
[35] Q. Chen, X. Huang, and R. Li, lncRNA MALAT1/miR-
205-5p axis regulates MPP(+)-induced cell apoptosis in MN9D
cells by directly targeting LRRK2. Am J Transl Res 10 (2018)
563-572.
[36] M. Oltra, L. Vidal-Gil, R. Maisto, J. Sancho-Pelluz, and
J.M. Barcia, Oxidative stress-induced angiogenesis is mediated by
miR-205-5p. J Cell Mol Med 24 (2020) 1428-1436.
[37] A. Tan, T. Li, L. Ruan, J. Yang, Y. Luo, L. Li, and X.
Wu, Knockdown of Malat1 alleviates high-glucose-induced
angiogenesis through regulating miR-205-5p/VEGF-A axis. Exp
Eye Res 207 (2021) 108585.
[38] Y.O. Nunez Lopez, G. Garufi, and A.A. Seyhan, Altered
levels of circulating cytokines and microRNAs in lean and obese
individuals with prediabetes and type 2 diabetes. Mol Biosyst 13
(2016) 106-121.
[39] T.S. Assmann, M. Recamonde-Mendoza, B.M. De Souza,
and D. Crispim, MicroRNA expression profiles and type 1 diabetes
mellitus: systematic review and bioinformatic analysis. Endocr
Connect 6 (2017) 773-790.
[40] S. Estrella, D.F. Garcia-Diaz, E. Codner, P. CamachoGuillén, and F. Pérez-Bravo, [Expression of miR-22 and
miR-150 in type 1 diabetes mellitus: Possible relationship with
autoimmunity and clinical characteristics]. Med Clin (Barc) 147
(2016) 245-7.
[41] N. Pescador, M. Pérez-Barba, J.M. Ibarra, A.
Corbatón, M.T. Martínez-Larrad, and M. Serrano-Ríos,
Serum circulating microRNA profiling for identification of
potential type 2 diabetes and obesity biomarkers. PLoS One 8
(2013) e77251.
[42] B. Kovacs, S. Lumayag, C. Cowan, and S. Xu,
MicroRNAs in early diabetic retinopathy in streptozotocininduced diabetic rats. Invest Ophthalmol Vis Sci 52 (2011) 4402-
9.
[43] Y. Duan, B. Zhou, H. Su, Y. Liu, and C. Du, miR-150
regulates high glucose-induced cardiomyocyte hypertrophy by
targeting the transcriptional co-activator p300. Exp Cell Res 319
(2013) 173-84.
[44] L. Shi, A.J. Kim, R.C. Chang, J.Y. Chang, W. Ying,
M.L. Ko, B. Zhou, and G.Y. Ko, Deletion of miR-150 Exacerbates
Retinal Vascular Overgrowth in High-Fat-Diet Induced Diabetic
Mice. PLoS One 11 (2016) e0157543.
[45] F. Yu, S. Chapman, D.L. Pham, M.L. Ko, B. Zhou,
and G.Y. Ko, Decreased miR-150 in obesity-associated type 2
diabetic mice increases intraocular inflammation and exacerbates
retinal dysfunction. BMJ Open Diabetes Res Care 8 (2020).
[46] J.M. Lu, Z.Z. Zhang, X. Ma, S.F. Fang, and X.H. Qin,
Repression of microRNA-21 inhibits retinal vascular endothelial
cell growth and angiogenesis via PTEN dependent-PI3K/Akt/
VEGF signaling pathway in diabetic retinopathy. Exp Eye Res 190
(2020) 107886.
[47] Y.H. Chen, S. Heneidi, J.M. Lee, L.C. Layman, D.W.
Stepp, G.M. Gamboa, B.S. Chen, G. Chazenbalk, and R. Azziz,
miRNA-93 inhibits GLUT4 and is overexpressed in adipose tissue
of polycystic ovary syndrome patients and women with insulin
resistance. Diabetes 62 (2013) 2278-86.
[48] K. Hirota, H. Keino, M. Inoue, H. Ishida, and A.
Hirakata, Comparisons of microRNA expression profiles in
vitreous humor between eyes with macular hole and eyes with
proliferative diabetic retinopathy. Graefes Arch Clin Exp
Ophthalmol 253 (2015) 335-42.
[49] J. Long, Y. Wang, W. Wang, B.H. Chang, and F.R.
Danesh, Identification of microRNA-93 as a novel regulator of
vascular endothelial growth factor in hyperglycemic conditions. J
Biol Chem 285 (2010) 23457-65.
[50] H.L. Zou, Y. Wang, Q. Gang, Y. Zhang, and Y. Sun,
Plasma level of miR-93 is associated with higher risk to develop
type 2 diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol
255 (2017) 1159-1166.
[51] Y. Zhou, S. Abraham, P. Andre, L.C. Edelstein, C.A.
Shaw, C.A. Dangelmaier, A.Y. Tsygankov, S.P. Kunapuli, P.F.
Bray, and S.E. McKenzie, Anti-miR-148a regulates platelet
FcγRIIA signaling and decreases thrombosis in vivo in mice.
Blood 126 (2015) 2871-81.
[52] J.Z. Lacerda, L.C. Ferreira, B.C. Lopes, A.F.
Aristizábal-Pachón, M.C. Bajgelman, T.F. Borin, and D.
Zuccari, Therapeutic Potential of Melatonin in the Regulation of
MiR-148a-3p and Angiogenic Factors in Breast Cancer. Microrna
8 (2019) 237-247.
[53] Z. Liang, K.P. Gao, Y.X. Wang, Z.C. Liu, L. Tian, X.Z.
Yang, J.Y. Ding, W.T. Wu, W.H. Yang, Y.L. Li, Z.B. Zhang, and
R.H. Zhai, RNA sequencing identified specific circulating miRNA
biomarkers for early detection of diabetes retinopathy. Am J
Physiol Endocrinol Metab 315 (2018) E374-e385.
[54] J. Wang, Y. Yao, K. Wang, J. Li, T. Chu, and H. Shen,
MicroRNA-148a-3p alleviates high glucose-induced diabetic
retinopathy by targeting TGFB2 and FGF2. Acta Diabetol 57
(2020) 1435-1443.
[55] M. Jiang, H. Wang, M. Jin, X. Yang, H. Ji, Y. Jiang, H.
Zhang, F. Wu, G. Wu, X. Lai, L. Cai, R. Hu, L. Xu, and L. Li,
Exosomes from MiR-30d-5p-ADSCs Reverse Acute Ischemic
Stroke-Induced, Autophagy-Mediated Brain Injury by Promoting
M2 Microglial/Macrophage Polarization. Cell Physiol Biochem 47
(2018) 864-878.
[56] F. Zhao, Y. Qu, J. Zhu, L. Zhang, L. Huang, H. Liu, S. Li,
and D. Mu, miR-30d-5p Plays an Important Role in Autophagy
and Apoptosis in Developing Rat Brains After Hypoxic-Ischemic
Injury. J Neuropathol Exp Neurol 76 (2017) 709-719.
[57] S. Josson, M. Gururajan, P. Hu, C. Shao, G.Y. Chu, H.E.
Zhau, C. Liu, K. Lao, C.L. Lu, Y.T. Lu, J. Lichterman, S. Nandana,
Q. Li, A. Rogatko, D. Berel, E.M. Posadas, L. Fazli, D. Sareen,
and L.W. Chung, miR-409-3p/-5p promotes tumorigenesis,
epithelial-to-mesenchymal transition, and bone metastasis of
human prostate cancer. Clin Cancer Res 20 (2014) 4636-46.
[58] J.D. Massaro, C.D. Polli, C.E.S. Matheus, C.C. Alves,
G.A. Passos, E.T. Sakamoto-Hojo, R.D.H.M. Wallace, N.J. Bispo
Cezar, D.M. Rassi, and F. Crispim, Post-transcriptional markers
associated with clinical complications in Type 1 and Type 2
diabetes mellitus. Molecular and Cellular Endocrinology (2019).
[59] J.M.W. Walz, ThomasZhang, Pei PeiCakir,
BertanGruening, BjoernAgostini, HansjuergenReuer,
TristanLudwig, FranziskaBoneva, StefaniyaFaerber, LotharLange,
ClemensSchlunck, Guenther R.Stahl, Andreas, Impact of
angiogenic activation and inhibition on miRNA profiles of human
retinal endothelial cells. Experimental Eye Research 181 (2019).
[60] Y. Wang, W. Lin, and J. Ju, MicroRNA-409-5p
promotes retinal neovascularization in diabetic retinopathy. Cell
Cycle 19 (2020) 1314-1325.
[61] A. Smyth, B. Callaghan, C.E. Willoughby, and C.
O’Brien, The Role of miR-29 Family in TGF-β Driven Fibrosis
in Glaucomatous Optic Neuropathy. Int J Mol Sci 23 (2022).
[62] R. Gong, R. Han, X. Zhuang, W. Tang, G. Xu, L. Zhang,
J. Wu, and J. Ma, MiR-375 mitigates retinal angiogenesis by
depressing the JAK2/STAT3 pathway. Aging (Albany NY) 14
(2022) 6594-6604.
[63] M. Ragusa, R. Caltabiano, A. Russo, L. Puzzo, T.
Avitabile, A. Longo, M.D. Toro, C. Di Pietro, M. Purrello, and M.
Reibaldi, MicroRNAs in vitreus humor from patients with ocular
diseases. Mol Vis 19 (2013) 430-40.
[64] 郑方静 , 赖红华 , 赖晓兰 , 等 . 微小 RNA-216a 调控
JAK2/STAT3 通路对鼻咽癌细胞增殖、侵袭、自噬及血管生
成的影响 [J]. 肿瘤学杂志 ,2021,27(11):905-914.
[65] X. Zhan, Y. Wang, and J. Yang, Janus Kinase/Signal
Converters, and the Transcriptional Activator Signaling Pathway
Promotes Lung Cancer Through Increasing M2 Macrophage.
Journal of Biomaterials and Tissue Engineering (2021).
[66] G. Xie, Y. Song, N. Li, Z. Zhang, X. Wang, Y. Liu, S.
Jiao, M. Wei, B. Yu, Y. Wang, H. Wang, and A. Qu, Myeloid
peroxisome proliferator-activated receptor α deficiency
accelerates liver regeneration via IL-6/STAT3 pathway after 2/3
partial hepatectomy in mice. Hepatobiliary Surg Nutr 11 (2022)
199-211.
[67] K. Yang, J. Zhu, H.H. Luo, S.W. Yu, and L. Wang, Proprotein convertase subtilisin/kexin type 9 promotes intestinal tumor
development by activating Janus kinase 2/signal transducer and
activator of transcription 3/SOCS3 signaling in Apc(Min/+) mice.
Int J Immunopathol Pharmacol 35 (2021) 20587384211038345.
[68] W.X. Cheng, H. Huang, J.H. Chen, T.T. Zhang, G.Y.
Zhu, Z.T. Zheng, J.T. Lin, Y.P. Hu, Y. Zhang, X.L. Bai, Y. Wang,
Z.W. Xu, B. Song, Y.Y. Mao, F. Yang, and P. Zhang, Genistein
inhibits angiogenesis developed during rheumatoid arthritis
through the IL-6/JAK2/STAT3/VEGF signalling pathway. J
Orthop Translat 22 (2020) 92-100.
[69] L. Hong, Y. Lin, X. Yang, T. Wu, Y. Zhang, Z.
Xie, J. Yu, H. Zhao, G. Yi, and M. Fu, A Narrative Review of
STAT Proteins in Diabetic Retinopathy: From Mechanisms to
Therapeutic Prospects. Ophthalmol Ther 11 (2022) 2005-2026.
(19 摘要 Views, 107 PDF Downloads)
Refbacks
- 当前没有refback。