开放期刊系统

基于深度学习的运动员动作识别算法研究

张 娜, 何 建强, 王 园园

摘要

在当下,动作识别技术于体育训练、医疗康复等多个领域的应用呈现出愈发广泛的态势。本文给出了一种借助深度学习实现的运动员动作识别算法。首先采用改进的YOLOv5s-CBAM模型进行目标检测,再利用HRNet模型提取骨骼关键点信息,最后结合时空图卷积网络(ST-GCN)完成动作分类。实验结果表明,所提出的方法在目标检测、关键点检测和动作识别任务中均取得了优异的性能,具有较高的实用价值和应用潜力。

关键词

深度学习;目标检测;动作识别;骨骼关键点检测

全文:

PDF

参考

[1]Karpathy,A.,Toderici,G.,Shetty,S.,Leung,T.,Sukthankar,R.,& Fei-Fei,L.“Large-scale video classification with convolutional

neural networks.” In Proceedings of the IEEE conference on computer vision and pattern recognition(pp.1725-1732).2014.

[2]Donahue,J.,McAuley,J.,& Ponce,J.“Long-term recurrent convolutional networks for visual recognition and description.” In

Proceedings of the IEEE conference on computer vision and pattern recognition(pp.2625-2634).2015.

[3]Redmon,Joseph,et al.“You only look once:Unified,real-time object detection.” Proceedings of the IEEE conference on computer

vision and pattern recognition.2016.

[4]Sun,Ke,et al.“Deep high-resolution representation learning for human pose estimation.” Proceedings of the IEEE/CVF conference

on computer vision and pattern recognition.2019.

[5]Chen,L.,et al.“Spatio-temporal graph convolutional networks:A deep learning framework for time-series forecasting.” arXiv

preprint arXiv:1801.07865,2018.

[6]武历展.基于深度学习的实时动作识别方法研究[D].长安大学,2023.

项目基金:陕西省体育科研常规课题(20240360)


(3 摘要 Views, 4 PDF Downloads)

Refbacks

  • 当前没有refback。