口腔医学数据特征建设
摘要
关键词
全文:
PDF参考
[1]Tatsugami,F. et al. Recent advances in artificial intelligence for cardiac CT:Enhancing diagnosis and prognosis prediction.
Diagnostic and Interventional Imaging 104,521-528,doi:10.1016/j.diii.2023.06.011(2023).
[2]Hossain,E. et al. Natural Language Processing in Electronic Health Records in relation to healthcare decision-making:A systematic
review. Comput Biol Med 155,106649,doi:10.1016/j.compbiomed.2023.106649(2023).
[3]Chen,L. et al. Extracting medications and associated adverse drug events using a natural language processing system combining
knowledge base and deep learning. J Am Med Inform Assoc 27,56-64,doi:10.1093/jamia/ocz141(2020).
[4]Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations,1990-2021:a systematic
analysis for the Global Burden of Disease Study 2021. Lancet 403,2162-2203,doi:10.1016/S0140-6736(24)00933-4(2024).
[5]Suskiewicz,M. J. et al. Updated protein domain annotation of the PARP protein family sheds new light on biological function. Nucleic
Acids Research 51,8217-8236,doi:10.1093/nar/gkad514(2023).
[6]Schwendicke,F. & Krois,J. Data Dentistry:How Data Are Changing Clinical Care and Research. Journal of Dental Research 101,
21-29,doi:10.1177/00220345211020265(2022).
[7]Liu,M. et al. Design and development of a disease-specific clinical database system to increase the availability of hospital data in
China. Health Inf Sci Syst 11,11,doi:10.1007/s13755-023-00211-4(2023).
[8]Frey,L. J. Artificial Intelligence and Integrated Genotype⁻Phenotype Identification. Genes(Basel)10,doi:10.3390/genes10010018
(2018).
[9]Schwendicke,F. et al. Artificial Intelligence for Caries Detection:Value of Data and Information. Journal of Dental Research 101,
1350-1356,doi:10.1177/00220345221113756(2022).
[10]Kühnisch,J. et al. ORCA-EFCD consensus report on clinical recommendation for caries diagnosis. Paper I:caries lesion detection
and depth assessment. Clin Oral Investig 28,227,doi:10.1007/s00784-024-05597-3(2024).[11]Schwendicke,F.,Samek,W. & Krois,J. Artificial Intelligence in Dentistry:Chances and Challenges. Journal of Dental Research
99,769-774,doi:10.1177/0022034520915714(2020).
[12]Queralt-Rosinach,N. et al. Structured reviews for data and knowledge-driven research. Database(Oxford)2020,doi:
10.1093/database/baaa015(2020).
[13]Elhussein,A.,Baymuradov,U.,Elhadad,N.,Natarajan,K. & Gürsoy,G. A framework for sharing of clinical and genetic data
for precision medicine applications. Nat Med 30,3578-3589,doi:10.1038/s41591-024-03239-5(2024).
[14]Frey , L. J. Data integration strategies for predictive analytics in precision medicine. Per Med 15 , 543-551 , doi :
10.2217/pme-2018-0035(2018).
[15]Sommer,K. K. et al. Structured,Harmonized,and Interoperable Integration of Clinical Routine Data to Compute Heart Failure Risk
Scores. Life(Basel)12,doi:10.3390/life12050749(2022).
[16]Schwaninger,D. R. et al. FDG-PET/CT for oral focus assessment in head and neck cancer patients. Clin Oral Investig 26,
4407-4418,doi:10.1007/s00784-022-04403-2(2022).
[17]Meerwein,C. M. et al. Contrast-enhanced 18F-FDG-PET/CT for Differentiating Tumour and Radionecrosis in Head and Neck
Cancer:Our experience in 37 Patients. Clin Otolaryngol 43,1594-1599,doi:10.1111/coa.13185(2018).
基金项目:四川大学华西口腔医院基础与应用基础研究项目(RD-02-202105)
通讯作者简介:陈红利(1991-),女,硕士,实验师,从事生物样本库及实验设备管理工作。
(4 摘要 Views, 31 PDF Downloads)
Refbacks
- 当前没有refback。