紫草素通过 Wnt 信号通路促进人脐静脉内皮细胞血管生成
摘要
信号通路参与糖尿病溃疡愈合过程中血管生成的机制。方法 在高糖处理条件下,用低、中、高(5、10、20umol/L)剂量
紫草素孵育 HUVECs,采用 CCK8 法检测细胞活力,TUNELl 实验观察细胞的凋亡水平。ELISA 检测血管生成关键因子
VEGF、VEGFR2、eNOS的变化,Western Blot 检测血管生成关键因子及Wnt信号通路中相关蛋白的表达。结果 在高糖条件下,
高剂量紫草素处理显著提升了细胞增殖水平(P<0.01);同时 TUNEL 实验显示紫草素处理明显降低了细胞的凋亡水平。
紫草素处理也显著提升了 VEGF、VEGFR2、eNOS 的表达水平(P<0.05)。通过 WB 实验,发现紫草素处理显著抑制了
GSK-3β 的表达(P<0.05)。给 HUVECs 施以 Wnt 抑制剂,则得到和紫草素处理相反的结果。结论 紫草素通过 GSK-3β
介导的 Wnt/β-Catenin 信号通路的激活,刺激人脐静脉内皮细胞(HUVECs)的增殖,进而促进内皮细胞血管生成。该研
究为深入理解紫草素促进糖尿病溃疡伤口愈合的作用机制提供了一定的理论基础。
关键词
全文:
PDF参考
[1]HOLT R I. Understanding of the causes and management
of diabetic foot disease [J]. Diabet Med, 2017, 34(3): 303-4.
[2]GALEANO M, PALLIO G, IRRERA N, et al.
Polydeoxyribonucleotide: A Promising Biological Platform to
Accelerate Impaired Skin Wound Healing [J]. Pharmaceuticals
(Basel), 2021, 14(11).
[3]LEE S H, KIM S H, KIM K B, et al. Factors Influencing
Wound Healing in Diabetic Foot Patients [J]. Medicina (Kaunas),
2024, 60(5).
[ 4 ] A N D U J A R I , R I O S J L , G I N E R R M , e t a l .
Pharmacological properties of shikonin - a review of literature
since 2002 [J]. Planta Med, 2013, 79(18): 1685-97.
[5]WANG F, YAO X, ZHANG Y, et al. Synthesis, biological
function and evaluation of Shikonin in cancer therapy [J].
Fitoterapia, 2019, 134: 329-39.
[6]GUO C, HE J, SONG X, et al. Pharmacological properties
and derivatives of shikonin-A review in recent years [J].
Pharmacol Res, 2019, 149: 104463.
[7]XUE C, DOU J, ZHANG S, et al. Shikonin potentiates skin
wound healing in Sprague-Dawley rats by stimulating fibroblast
and endothelial cell proliferation and angiogenesis [J]. J Gene
Med, 2024, 26(1): e3633.
[8]CHEN X, LI Z, GE X, et al. Ferric Iron/Shikonin
Nanoparticle-Embedded Hydrogels with Robust Adhesion and
Healing Functions for Treating Oral Ulcers in Diabetes [J]. Adv
Sci (Weinh), 2024, 11(45): e2405463.
[9]ANDUJAR I, RIOS J L, GINER R M, et al. Shikonin
promotes intestinal wound healing in vitro via induction of TGF-
beta release in IEC-18 cells [J]. Eur J Pharm Sci, 2013, 49(4):
637-41.
[10]BEYENE R T, DERRYBERRY S L, JR., BARBUL A.
The Effect of Comorbidities on Wound Healing [J]. Surg Clin North
Am, 2020, 100(4): 695-705.
[11]SHAIKH-KADER A, HOURELD N N, RAJENDRAN
N K, et al. The link between advanced glycation end products and
apoptosis in delayed wound healing [J]. Cell Biochem Funct, 2019,
37(6): 432-42.
[12]KIM S Y, NAIR M G. Macrophages in wound healing:
activation and plasticity [J]. Immunol Cell Biol, 2019, 97(3): 258-
67.
[13]RODRIGUES M, KOSARIC N, BONHAM C A, et al.
Wound Healing: A Cellular Perspective [J]. Physiol Rev, 2019,
99(1): 665-706.
[14]MORBIDELLI L, GENAH S, CIALDAI F. Effect of
Microgravity on Endothelial Cell Function, Angiogenesis, and
Vessel Remodeling During Wound Healing [J]. Front Bioeng
Biotechnol, 2021, 9: 720091.
[15]SUN Q, RABBANI P, TAKEO M, et al. Dissecting Wnt
Signaling for Melanocyte Regulation during Wound Healing [J]. J
Invest Dermatol, 2018, 138(7): 1591-600.
[16]SEO S H, LEE S H, CHA P H, et al. Polygonum aviculare
L. and its active compounds, quercitrin hydrate, caffeic acid,
and rutin, activate the Wnt/beta-catenin pathway and induce
cutaneous wound healing [J]. Phytother Res, 2016, 30(5): 848-54.
[17]MI Y, ZHONG L, LU S, et al. Quercetin promotes
cutaneous wound healing in mice through Wnt/beta-catenin
signaling pathway [J]. J Ethnopharmacol, 2022, 290: 115066.
[18]HOUSCHYAR K S, TAPKING C, PULADI B, et al. Wnt
signaling in cutaneous wound healing [J]. Handchir Mikrochir
Plast Chir, 2020, 52(2): 151-8.
[19]ZHAO Y, RAO W, WAN Y, et al. Overexpression of
microRNA‑155 alleviates palmitate‑induced vascular endothelial
cell injury in human umbilical vein endothelial cells by negatively
regulating the Wnt signaling pathway [J]. Mol Med Rep, 2019,
20(4): 3527-34.
[20]LI Y, MENG R. MicroRNA-154 Targets the Wnt/beta-
Catenin Signaling Pathway Following Injury to Human Vascular
Endothelial Cells by Hydrogen Peroxide [J]. Med Sci Monit, 2019,
25: 5648-56.
[21]LIU X, ZHAO N, LIANG H, et al. Bone tissue
engineering scaffolds with HUVECs/hBMSCs cocultured on
3D-printed composite bioactive ceramic scaffolds promoted
osteogenesis/angiogenesis [J]. J Orthop Translat, 2022, 37: 152-
62.
[22] 高爱琴 . 紫草素通过 MAPK 和 AKT/mTOR 信号通路
抑制肿瘤血管生成和肿瘤生长 [D]; 昆明理工大学 , 2020.
[23]DUDLEY A C, GRIFFIOEN A W. Pathological
angiogenesis: mechanisms and therapeutic strategies [J].
Angiogenesis, 2023, 26(3): 313-47.
[24]ZHANG Y, HUANG N Q, YAN F, et al. Diabetes
mellitus and Alzheimer’s disease: GSK-3β as a potential link [J].
Behav Brain Res, 2018, 339: 57-65.
[25]LAW S M, ZHENG J J. Premise and peril of Wnt
signaling activation through GSK-3beta inhibition [J]. iScience,
2022, 25(4): 104159.
[26]BURGY O, KONIGSHOFF M. The WNT signaling
pathways in wound healing and fibrosis [J]. Matrix Biol, 2018, 68-
69: 67-80.
(2 摘要 Views, 4 PDF Downloads)
Refbacks
- 当前没有refback。