肺损伤诱导的细胞动态与修复再生研究进展
摘要
性低氧性呼吸衰竭。因此,ALI 往往会伴随急性呼吸窘迫综合征(acute respiratory distress syndrome,ARDS),主要病理
特征包括肺泡间隙积聚富含蛋白质的炎性积液、肺泡出血、纤维蛋白沉积、部分肺泡组织塌陷以及间质纤维化。近年来,
不同细胞种类在肺损伤中的病理作用引起了全世界的广泛关注,但是肺损伤时肺部微环境中细胞层次结构和细胞活跃轨迹
的变化仍有待深入探讨。因此,本文综述了 ALI/ARDS 中肺部微环境从上皮开始深入至内皮进而引起的细胞作用机制,旨
在阐述肺泡上皮细胞、肺内皮细胞、巨噬细胞以及招募而来的中性粒细胞介导的肺损伤与修复再生研究进展。
关键词
全文:
PDF参考
[1]Gorman EA, O’Kane CM, McAuley DF. Acute
respiratory distress syndrome in adults: diagnosis, outcomes, long_xfffe_term sequelae, and management[J]. Lancet, 2022, 400(10358):
1157-1170.
[2]Wang J, Peng X, Yuan N, et al. Interplay between
pulmonary epithelial stem cells and innate immune cells
contribute to the repair and regeneration of ALI/ARDS[J]. Transl
Res Anat, 2024, 272: 111-125.
[3]Price DR, Garcia JGN. A Razor’s Edge: Vascular
Responses to Acute Inflammatory Lung Injury/Acute Respiratory
Distress Syndrome[J]. Annu Rev Physiol, 2024, 86(1): 505-529.
[4] 胡涛涛,常树森,魏在荣 . 损伤周围神经的微环境
中巨噬细胞极化成 M2 表型可有效促进其再生 [J]. 中国组织
工程研究 , 2022, 26(14): 2285-2290.
[5]Hu R, Chen ZF, Yan J, et al. Endoplasmic Reticulum
Stress of Neutrophils Is Required for Ischemia/Reperfusion_xfffe_Induced Acute Lung Injury[J]. J Immunol, 2015, 195(10): 4802-
4809.
[6]Li J, Wang Z, Chu Q, et al. The Strength of Mechanical
Forces Determines the Differentiation of Alveolar Epithelial
Cells[J]. Dev Cell, 2018, 44(3): 297-312. e295.
[7]Zacharias WJ, Frank DB, Zepp JA, et al. Regeneration
of the lung alveolus by an evolutionarily conserved epithelial
progenitor[J]. Nature, 2018, 555(7695): 251-255.
[8]Wang Y, Wang L, Ma S, et al. Repair and regeneration of
the alveolar epithelium in lung injury[J]. FASEB J, 2024, 38(8):
e23612.
[9]Nabhan AN, Brownfield DG, Harbury PB, et al. Singlecell Wnt signaling niches maintain stemness of alveolar type 2
cells[J]. Science, 2018, 359(6380): 1118-1123.
[10]Finn J, Sottoriva K, Pajcini KV, et al. Dlk1-Mediated
Temporal Regulation of Notch Signaling Is Required for
Differentiation of Alveolar Type II to Type I Cells during Repair[J].
Cell Rep, 2019, 26(11): 2942-2954. e2945.
[11]Shen M, Luo Z, Zhou Y. Regeneration-Associated
Transitional State Cells in Pulmonary Fibrosis[J]. Int J Mol Sci,
2022, 23(12): 6757.
[12]Niethamer TK, Levin LI, Morley MP, et al. Atf3 defines
a population of pulmonary endothelial cells essential for lung
regeneration[J]. Elife, 2023, 12: e83835.
[13]Glover E K, Jordan, N, Sheerin, N. S, et al. Regulation
of Endothelial-to-Mesenchymal Transition by MicroRNAs in
Chronic Allograft Dysfunction[J]. Transplantation, 2019, 103(4):
e64-e73.
[14]Zhang L, Gao S, White Z, et al. Single-cell transcriptomic
profiling of lung endothelial cells identifies dynamic inflammatory
and regenerative subpopulations[J]. JCI Insight, 2022, 7(11):
e158079.
[15]Basil MC, Katzen J, Engler AE, et al. The Cellular and
Physiological Basis for Lung Repair and Regeneration: Past,
Present, and Future[J]. Cell Stem Cell, 2020, 26(4): 482-502.
[16]Song G, Cai F, Liu L, et al. Liposomal sodium clodronate
mitigates radiation-induced lung injury through macrophage
depletion[J]. Transl Oncol, 2024, 47: 102029.
[17]Mosser DM, Hamidzadeh K, Goncalves R. Macrophages
and the maintenance of homeostasis[J]. Cell Mol Immunol, 2021,
18(3): 579-587.
[18]Mittal M, Tiruppathi C, Nepal S, et al. TNF-α-
stimulated gene-6 (TSG6) activates macrophage phenotype
transition to prevent inflammatory lung injury[J]. Proc Natl Acad
Sci USA, 2016, 113(50): e8151-e8158.
[19]Li Y, Huang X, Huang S, et al. Central role of myeloid
MCPIP1 in protecting against LPS-induced inflammation and lung
injury[J]. Signal Transduct Target Ther, 2017, 2: 17066.
[20]Boniakowski AE, Kimball AS, Jacobs BN, et al.
Macrophage-Mediated Inflammation in Normal and Diabetic
Wound Healing[J]. J Immunol, 2017, 199(1): 17-24.
[21]Huang D, Zhang Z, Jian J, et al. Parecoxib sodium
attenuates acute lung injury following burns by regulating M1/M2
macrophage polarization through the TLR4/NF-κB pathway[J].
Eur J Pharmacol, 2024, 968: 176407.
[22]Zhang X, Chen C, Ling C, et al. EGFR tyrosine kinase
activity and Rab GTPases coordinate EGFR trafficking to regulate
macrophage activation in sepsis[J]. Cell Death Dis, 2022, 13(11):
934.
[23]Sawoo R, Dey R, Ghosh R, et al. TLR4 and TNFR1
blockade dampen M1 macrophage activation and shifts them
towards an M2 phenotype[J]. Immunol Res, 2021, 69(4): 334-351.
[24]Wang WB, Li JT, Hui Y, et al. Combination of
pseudoephedrine and emodin ameliorates LPS-induced acute lung
injury by regulating macrophage M1/M2 polarization through the
VIP/cAMP/PKA pathway[J]. Chin Med, 2022, 17(1): 19.
[25]Blazquez-Prieto J, Lopez-Alonso I, Huidobro C, et al.
The Emerging Role of Neutrophils in Repair after Acute Lung
Injury[J]. Am J Respir Cell Mol Biol, 2018, 59(3): 289-294.
[26]Wang K, Wang M, Liao X, et al. Locally organised and
activated Fth1hi neutrophils aggravate inflammation of acute lung
injury in an IL-10-dependent manner[J]. Nat Commun, 2022,
13(1): 7703.
[27]Song C, Li H, Mao Z, et al. Delayed neutrophil apoptosis
may enhance NET formation in ARDS[J]. Respir Res, 2022, 23(1):
155.
[28]Grudzinska FS, Sapey E. Friend or foe? The dual role of
neutrophils in lung injury and repair[J]. Thorax, 2018, 73(4): 305-
307.
(2 摘要 Views, 4 PDF Downloads)
Refbacks
- 当前没有refback。