开放期刊系统

CT 及 MRI 影像组学在卵巢癌中的研究进展

杨 天一, 王 锐*

摘要

卵巢癌是妇科常见的肿瘤之一,它具有发现晚、预后差等特点,容易对化疗药物铂类产生耐药性,术前及术后常
规的影像学方法有 CT、MRI 及超声。影像组学是一种基于计算机软件的新型技术,它利用机器提取并筛选疾病相关特征,
主要用于疾病分级、分期、诊断等,指导临床对患者进行精准诊疗。

关键词

卵巢癌;上皮性卵巢癌;影像组学;预测

全文:

PDF

参考

[1] Stephanie Lheureux,Marsela Braunstein,Amit M Oza.

Epithelial ovarian cancer:evolution of management in the era of precision

medicine[J].CA cancer J Clin,2019,69(4):280-304.DOI:10.3322/

caac.21559.

[2] 曹文枫 , 刘明 , 孙保存 . 上皮性卵巢癌起源二元论及

分子生物学基础 [J]. 中国肿瘤临床 ,2013,40(20):1264-1267.

[3] Grobben Y,den Ouden J,Aguado C,et al.Amino Acid-

Metabolizing Enzymes in AdvancedHigh-Grade Serous Ovarian Cancer

Patients:Value of Ascites as Biomarker Source and Rolefor IL4I1 and

IDO1[J].Cancers,2023,15(3).

[4] Li S, Liu J, Xiong Y, Pang P, Lei P, Zou H, Zhang M, Fan B,

Luo P. A radiomics approach for automated diagnosis of ovarian neoplasm

malignancy in computed tomography. Sci Rep. 2021 Apr 22;11(1):8730.

doi: 10.1038/s41598-021-87775-x. PMID: 33888749; PMCID:

PMC8062553.

[5] Chen J, Yang F, Liu C, Pan X, He Z, Fu D, Jin G, Su D.

Diagnostic value of a CT-based radiomics nomogram for discrimination

of benign and early stage malignant ovarian tumors. Eur J Med Res.

2023 Dec 19;28(1):609. doi: 10.1186/s40001-023-01561-1IF: 2.8 Q2 .

PMID: 38115095; PMCID: PMC10729460.

[6] Kurman RJ,Shih Ie M.The Dualistic Model of Ovarian

Carcinogenesis:Revisited,Revised,and Expanded[J].Am J

Pathol,2016,186:733-747.

[7] Jian J, Li Y, Pickhardt PJ, Xia W, He Z, Zhang R, Zhao S,

Zhao X, Cai S, Zhang J, Zhang G, Jiang J, Zhang Y, Wang K, Lin G, Feng

F, Wu X, Gao X, Qiang J. MR image-based radiomics to differentiate

type Ι and type ΙΙ epithelial ovarian cancers. Eur Radiol. 2021

Jan;31(1):403-410. doi: 10.1007/s00330-020-07091-2IF: 4.7 Q1 .

Epub 2020 Aug 2. PMID: 32743768.

[8] Wei M, Feng G, Wang X, Jia J, Zhang Y, Dai Y, Qin C, Bai

G, Chen S. Deep Learning Radiomics Nomogram Based on Magnetic

Resonance Imaging for Differentiating Type I/II Epithelial Ovarian

Cancer. Acad Radiol. 2024 Jun;31(6):2391-2401. doi: 10.1016/

j.acra.2023.08.002IF: 3.8 Q1 . Epub 2023 Aug 27. PMID: 37643927.

[9] Chen HZ, Wang XR, Zhao FM, Chen XJ, Li XS, Ning G,

Guo YK. The Development and Validation of a CT-Based Radiomics

Nomogram to Preoperatively Predict Lymph Node Metastasis in High-

Grade Serous Ovarian Cancer. Front Oncol. 2021 Aug 31;11:711648.

doi: 10.3389/fonc.2021.711648IF: 3.5 Q2 . PMID: 34532289; PMCID:

PMC8438232.

[10] Li J, Zhang J, Wang F, Ma J, Cui S, Ye Z. CT-Based

Radiomics for the Preoperative Prediction of Occult Peritoneal Metastasis

in Epithelial Ovarian Cancers. Acad Radiol. 2024 May;31(5):1918-1930.

doi: 10.1016/j.acra.2023.11.032. Epub 2023 Dec 9. PMID: 38072725.

[11] Manganaro L, Gigli S, Antonelli A, Saldari M, Tomao F,

Marchetti C, Anastasi E, Laghi A. Imaging strategy in recurrent ovarian

cancer: a practical review. Abdom Radiol (NY). 2019 Mar;44(3):1091-

1102. doi: 10.1007/s00261-018-1677-y. PMID: 29987401.

[12] WEI W, LIU Z, RONG Y, et al. A Computed Tomography-

Based Radiomic Prognostic Marker of Advanced High-Grade Serous

Ovarian Cancer Recurrence: A Multicenter Study [J]. Front Oncol, 2019,

9: 255.

[13] Chen HZ, Wang XR, Zhao FM, Chen XJ, Li XS, Ning G, Guo

YK. A CT-based radiomics nomogram for predicting early recurrence

in patients with high-grade serous ovarian cancer. Eur J Radiol. 2021

Dec;145:110018. doi: 10.1016/j.ejrad.2021.110018. Epub 2021 Nov 5.

PMID: 34773830.

[14] Li H, Cai S, Deng L, Xiao Z, Guo Q, Qiang J, Gong J, Gu Y,

Liu Z. Prediction of platinum resistance for advanced high-grade serous

ovarian carcinoma using MRI-based radiomics nomogram. Eur Radiol.

2023 Aug;33(8):5298-5308. doi: 10.1007/s00330-023-09552-wIF: 4.7

Q1 . Epub 2023 Mar 30. PMID: 36995415IF: 4.7 Q1 .

[15] Hatt M, Tixier F, Pierce L, et al.Characterization of PET/CT

images using texture analysis:the past, the present any future?[J].Eur J

Nuclear Medicine and Molecular Imaging, 2017, 44 (1) :151-165.


(6 摘要 Views, 18 PDF Downloads)

Refbacks

  • 当前没有refback。