开放期刊系统

影像组学及深度学习在胃癌 T 分期的研究进展

徐 李杭, 李 明玉, 米 楠, 尚 会, 曹振 东*

摘要

胃癌的术前 T 分期对于治疗决策和预后评估至关重要,然而传统影像学在这方面存在一定的限制。影像组学作为
一种新兴的技术,与卷积神经网络(Convolutional Neural Networks,CNNs)作为常见结构的深度学习(Deep Learning,
DL)算法在解决传统方法局限性的同时,也为胃癌的精准诊断和治疗提供了新的可能性。影像组学及深度学习不仅可以提
高胃癌 T 分期的准确性,还有助于个体化治疗方案的制定、疗效监测和预后评估。虽然目前还面临诸多挑战,比如数据获
取的一致性、模型的普适性和临床验证的需求。但在未来,随着更多高质量数据的积累和多中心研究的开展,影像组学及
深度学习在胃癌诊疗中的应用前景将更加广阔。

关键词

影像组学;深度学习;胃癌;T 分期

全文:

PDF

参考

[1]Sung H, Ferlay J, Siegel RL, et al. Global Cancer

Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality

Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin.

2021. 71(3): 209-249.

[2] 胃癌诊疗规范 (2018 年版 ). 中华消化病与影像杂志

( 电子版 ). 2019. 9(03): 118-144.

[3]Seevaratnam R, Cardoso R, McGregor C, et al. How useful

is preoperative imaging for tumor, node, metastasis (TNM) staging

of gastric cancer? A meta-analysis. Gastric Cancer. 2012. 15

Suppl 1: S3-18.

[4]Tang LL, Chen YP, Chen CB, et al. The Chinese Society of

Clinical Oncology (CSCO) clinical guidelines for the diagnosis and

treatment of nasopharyngeal carcinoma. Cancer Commun (Lond).

2021. 41(11): 1195-1227.

[5] 韩英 , 何生 , 姜增誉 , 李健丁 . 人工智能在乳腺影像

领域的应用现状 . 放射学实践 . 2019. 34(07): 813-816.

[6] 许梨梨 , 孙昊 , 金征宇 . 前列腺癌包膜外侵犯的 MRI

相关影像及临床预测方法研究进展 . 放射学实践 . 2022.

37(01): 110-114.

[7] 廖淑婷 , 于向荣 . 能谱 CT 和人工智能在甲状腺癌诊

断中的应用 . 实用医学杂志 . 2022. 38(02): 129-133.

[8]Avanzo M, Stancanello J, El Naqa I. Beyond imaging: The

promise of radiomics. Phys Med. 2017. 38: 122-139.

[9]Lambin P, Rios-Velazquez E, Leijenaar R, et al.

Radiomics: extracting more information from medical images using

advanced feature analysis. Eur J Cancer. 2012. 48(4): 441-6.

[10]Hamilton PW, Bankhead P, Wang Y, et al. Digital

pathology and image analysis in tissue biomarker research.

Methods. 2014. 70(1): 59-73.

[11]Gillies RJ, Kinahan PE, Hricak H. Radiomics: Images

Are More than Pictures, They Are Data. Radiology. 2016. 278(2):

563-77.

[12]Larue RT, Defraene G, De Ruysscher D, Lambin

P, van Elmpt W. Quantitative radiomics studies for tissue

characterization: a review of technology and methodological

procedures. Br J Radiol. 2017. 90(1070): 20160665.

[13]Bourgier C, Colinge J, Aillères N, et al. [Radiomics:

Definition and clinical development]. Cancer Radiother. 2015.

19(6-7): 532-7.

[14]Wani AH, Parry AH, Feroz I, Choh NA. Preoperative

Staging of Gastric Cancer Using Computed Tomography and Its

Correlation with Histopathology with Emphasis on Multi-planar

Reformations and Virtual Gastroscopy. J Gastrointest Cancer.

2021. 52(2): 606-615.

[15]Feng C, Cheng J, Zeng X, et al. Development and

evaluation of a ceMDCT-based preoperative risk stratification

model to predict disease-free survival after radical surgery in

patients with gastric cancer. Abdom Radiol (NY). 2021. 46(9):

4079-4089.

[16] 唐磊 . 从 UICC/AJCC 第 8 版 TNM 分期看胃癌影像

学 T 分期的发展方向 . 中华胃肠外科杂志 . 2017. 20(07): 735-

739.

[17]Wang Y, Liu W, Yu Y, et al. Prediction of the Depth

of Tumor Invasion in Gastric Cancer: Potential Role of CT

Radiomics. Acad Radiol. 2020. 27(8): 1077-1084.

[18]Sun RJ, Fang MJ, Tang L, et al. CT-based deep learning

radiomics analysis for evaluation of serosa invasion in advanced

gastric cancer. Eur J Radiol. 2020. 132: 109277.

[19]Tao J, Liu D, Hu FB, et al. Development and Validation

of a Computed Tomography-Based Model for Noninvasive

Prediction of the T Stage in Gastric Cancer: Multicenter

Retrospective Study. J Med Internet Res. 2024. 26: e56851.

[20]Moutik O, Sekkat H, Tigani S, et al. Convolutional Neural

Networks or Vision Transformers: Who Will Win the Race for

Action Recognitions in Visual Data. Sensors (Basel). 2023. 23(2):

734.


(5 摘要 Views, 5 PDF Downloads)

Refbacks

  • 当前没有refback。