影像组学及深度学习在胃癌 T 分期的研究进展
摘要
一种新兴的技术,与卷积神经网络(Convolutional Neural Networks,CNNs)作为常见结构的深度学习(Deep Learning,
DL)算法在解决传统方法局限性的同时,也为胃癌的精准诊断和治疗提供了新的可能性。影像组学及深度学习不仅可以提
高胃癌 T 分期的准确性,还有助于个体化治疗方案的制定、疗效监测和预后评估。虽然目前还面临诸多挑战,比如数据获
取的一致性、模型的普适性和临床验证的需求。但在未来,随着更多高质量数据的积累和多中心研究的开展,影像组学及
深度学习在胃癌诊疗中的应用前景将更加广阔。
关键词
全文:
PDF参考
[1]Sung H, Ferlay J, Siegel RL, et al. Global Cancer
Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality
Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin.
2021. 71(3): 209-249.
[2] 胃癌诊疗规范 (2018 年版 ). 中华消化病与影像杂志
( 电子版 ). 2019. 9(03): 118-144.
[3]Seevaratnam R, Cardoso R, McGregor C, et al. How useful
is preoperative imaging for tumor, node, metastasis (TNM) staging
of gastric cancer? A meta-analysis. Gastric Cancer. 2012. 15
Suppl 1: S3-18.
[4]Tang LL, Chen YP, Chen CB, et al. The Chinese Society of
Clinical Oncology (CSCO) clinical guidelines for the diagnosis and
treatment of nasopharyngeal carcinoma. Cancer Commun (Lond).
2021. 41(11): 1195-1227.
[5] 韩英 , 何生 , 姜增誉 , 李健丁 . 人工智能在乳腺影像
领域的应用现状 . 放射学实践 . 2019. 34(07): 813-816.
[6] 许梨梨 , 孙昊 , 金征宇 . 前列腺癌包膜外侵犯的 MRI
相关影像及临床预测方法研究进展 . 放射学实践 . 2022.
37(01): 110-114.
[7] 廖淑婷 , 于向荣 . 能谱 CT 和人工智能在甲状腺癌诊
断中的应用 . 实用医学杂志 . 2022. 38(02): 129-133.
[8]Avanzo M, Stancanello J, El Naqa I. Beyond imaging: The
promise of radiomics. Phys Med. 2017. 38: 122-139.
[9]Lambin P, Rios-Velazquez E, Leijenaar R, et al.
Radiomics: extracting more information from medical images using
advanced feature analysis. Eur J Cancer. 2012. 48(4): 441-6.
[10]Hamilton PW, Bankhead P, Wang Y, et al. Digital
pathology and image analysis in tissue biomarker research.
Methods. 2014. 70(1): 59-73.
[11]Gillies RJ, Kinahan PE, Hricak H. Radiomics: Images
Are More than Pictures, They Are Data. Radiology. 2016. 278(2):
563-77.
[12]Larue RT, Defraene G, De Ruysscher D, Lambin
P, van Elmpt W. Quantitative radiomics studies for tissue
characterization: a review of technology and methodological
procedures. Br J Radiol. 2017. 90(1070): 20160665.
[13]Bourgier C, Colinge J, Aillères N, et al. [Radiomics:
Definition and clinical development]. Cancer Radiother. 2015.
19(6-7): 532-7.
[14]Wani AH, Parry AH, Feroz I, Choh NA. Preoperative
Staging of Gastric Cancer Using Computed Tomography and Its
Correlation with Histopathology with Emphasis on Multi-planar
Reformations and Virtual Gastroscopy. J Gastrointest Cancer.
2021. 52(2): 606-615.
[15]Feng C, Cheng J, Zeng X, et al. Development and
evaluation of a ceMDCT-based preoperative risk stratification
model to predict disease-free survival after radical surgery in
patients with gastric cancer. Abdom Radiol (NY). 2021. 46(9):
4079-4089.
[16] 唐磊 . 从 UICC/AJCC 第 8 版 TNM 分期看胃癌影像
学 T 分期的发展方向 . 中华胃肠外科杂志 . 2017. 20(07): 735-
739.
[17]Wang Y, Liu W, Yu Y, et al. Prediction of the Depth
of Tumor Invasion in Gastric Cancer: Potential Role of CT
Radiomics. Acad Radiol. 2020. 27(8): 1077-1084.
[18]Sun RJ, Fang MJ, Tang L, et al. CT-based deep learning
radiomics analysis for evaluation of serosa invasion in advanced
gastric cancer. Eur J Radiol. 2020. 132: 109277.
[19]Tao J, Liu D, Hu FB, et al. Development and Validation
of a Computed Tomography-Based Model for Noninvasive
Prediction of the T Stage in Gastric Cancer: Multicenter
Retrospective Study. J Med Internet Res. 2024. 26: e56851.
[20]Moutik O, Sekkat H, Tigani S, et al. Convolutional Neural
Networks or Vision Transformers: Who Will Win the Race for
Action Recognitions in Visual Data. Sensors (Basel). 2023. 23(2):
734.
(5 摘要 Views, 5 PDF Downloads)
Refbacks
- 当前没有refback。