开放期刊系统

cGAS–STING 信号通路相关靶向药物研究进展

张 虎城

摘要

cGAS-STING 信号通路是介导 DNA 免疫的主要信号通路该通路在抵御病原体的入侵以及抗肿瘤方面发挥重要
作用同时该通路的异常会导致各种免疫疾病的发生因而开发针对该信号通路的靶向性药物至关重要本文就 cGASSTING 信号通路中最关键的两个蛋白 cGAS 以及 STING 的靶向性药物的研究进展进行讨论以期为临床药物的进一步研
发提供参考和思路。

关键词

靶向药物;cGAS-STING 信号通路;激动剂;抑制剂

全文:

PDF

参考

[1] 唐庭轩 , 郭凯文 .SARS-CoV-2 病毒逃避固有免疫

应答的机制研究进展 [J]. 生命的化学 ,2022,42(02):338-342.

[2] Motwani M, Pesiridis S, Fitzgerald K A. DNA sensing

by the cGAS-STING pathway in health and disease[J]. Nat Rev

Genet, 2019, 20(11): 657-674.

[3] Yu L, Liu P. Cytosolic DNA sensing by cGAS:

regulation, function, and human diseases[J]. Signal Transduct

Target Ther, 2021, 6(1) [2021-08-30].

[4] Cheng Z, Dai T, He X, et al. The interactions between

cGAS-STING pathway and pathogens[J]. Signal Transduct Target

Ther, 2020, 5(1) [2021-08-30].

[5] Chen Q, Sun L, Chen Z J. Regulation and function of the

cGAS-STING pathway of cytosolic DNA sensing[J]. Nat Immunol,

2016, 17(10): 1142-1149.

[6] Wan D, Jiang W, Hao J. Research advances in how

the cGAS-STING pathway controls the cellular inflammatory

response[J]. Front Immunol, 2020, 11 [2021-08-30].

[7] An J, Minie M, Sasaki T, et al. Antimalarial Drugs as

Immune Modulators: New Mechanisms for Old Drugs[J]. Annu Rev

Med, 2017, 68: 317-330.

[8] Vincent J, Adura C, Gao P, et al. Small molecule

inhibition of cGAS reduces interferon expression in primary

macrophages from autoimmune mice[J]. Nat Commun, 2017, 8(1):

1-13.

[9] Hall J, Brault A, Vincent F, et al. Discovery of PF-

06928215 as a high affinity inhibitor of cGAS enabled by a

novel fluorescence polarization assay[J]. PLoS One, 2017, 12(9):

e0184843.

[10] Chu L, Li C, Li Y, et al. Perillaldehyde inhibition of

cGAS reduces dsDNA-induced interferon response[J]. Front

Immunol, 2021, 12: 1201.

[11] Haipeng Liu, Hang Su, Fei Wang, et al. Pharmacological

boosting of cGAS activation sensitizes chemotherapy by enhancing

antitumor immunity[J]. Cell Reports, 2023, 42(3): 112275.

[12] Shang G, Zhang C, Chen Z J, et al. Cryo-EM structures

of STING reveal its mechanism of activation by cyclic GMP

AMP[J]. Nature, 2019, 567(7748) 389-393.

[13] Kato K, Omura H, Ishitani R, et al. Cyclic GMP-AMP

as an endogenous second messenger in innate immune signaling

by cytosolic DNA[J]. Annu Rev Biochem, 2017, 86: 541-566.

[14] Mukai K, Konno H, Akiba T, et al. Activation of STING

requires palmitoylation at the Golgi[J]. Nat Commun, 2016,

7:11932.

[15] Haag SM, Gulen MF, Reymond L, et al. Targeting

STING with covalent small-molecule inhibitors[J]. Nature, 2018,

559(7713): 269-273.

[16] Hansen AL, Buchan GJ, Ruhl M, et al. Nitro-fatty acids

are formed in response to virus infection and are potent inhibitors

of STING palmitoylation and signaling[J]. Proc Natl Acad Sci USA,

2018, 115(33): E7768-E7775.

[17] Siu T, Altman M D, Baltus G A, et al. Discovery of a

novel cGAMP competitive ligand of the inactive form of STING[J].

ACS Med Chem Lett, 2018, 10(1): 92-97.

[18] Hong Z, Mei J, Li C, et al. STING inhibitors target the

cyclic dinucleotide binding pocket[J]. PNAS, 2021, 118(24):

e2105465118.

[19] Li S, Hong Z, Wang Z, et al. The cyclopeptide astin C

specifically inhibits the innate immune CDN sensor STING[J].

Cell reports, 2018, 25(12): 3405-3421.

[20] Liu H, Moura-Alves P, Pei G, et al. cGAS facilitates

sensing of extracellular cyclic dinucleotides to activate innate

immunity[J]. EMBO Rep, 2019, 20(4): e46293.

[21] Amouzegar A, Chelvanambi M, Filderman J N, et al.

STING agonists as cancer therapeutics[J]. Cancers, 2021, 13(11):

2695.

[22] Berger G, Lawler S E. Novel non-nucleotidic STING

agonists for cancer immunotherapy[J]. Future Med Chem, 2018,

10(24): 2767-2769.

[23] Wang C, Sinn M, Stifel J, et al. Synthesis of All Possible

Canonical (3’-5’-Linked) Cyclic Dinucleotides and Evaluation

of Riboswitch Interactions and Immune-Stimulatory Effects[J]. J

Am Chem Soc, 2017, 139(45): 16154-16160.

[24] Ramanjulu J M, Pesiridis G S, Yang J, et al. Design

of amidobenzimidazole STING receptor agonists with systemic

activity[J]. Nature, 2018, 564(7736): 439-443.

[25] Gao P, Zillinger T, Wang W, et al. Binding-pocket and

lid-region substitutions render human STING sensitive to the

species-specific drug DMXAA[J]. Cell Rep, 2014, 8(6): 1668-

1676.


(7 摘要 Views, 36 PDF Downloads)

Refbacks

  • 当前没有refback。