开放期刊系统

皮肤影像与人工智能在痤疮诊断与分级中的应用

董 灵娣, 周 自福, 喻 楠*

摘要

痤疮分级是痤疮治疗方案选择及疗效评价的重要依据。目前痤疮分级仍主要依靠临床医生的主观经验判断,耗时
且主观性强,尤其对于微小或不典型皮损,不同医生的分级结果误差较大。近年来,随着皮肤影像及人工智能技术的迅速
发展,图像分析技术结合深度学习算法能够更好的识别、分析医学图像信息。本文将对皮肤影像及人工智能技术在痤疮分
级方面的研究进展进行综述。

关键词

痤疮;分级;皮肤影像;人工智能

全文:

PDF

参考

[1] Zaenglein Andrea L,Pathy Arun L,Schlosser Bethanee J et

al. Guidelines of care for the management of acne vulgaris.[J].J Am

Acad Dermatol,2016,74:945-73.

[2] Ramli Roshaslinie,Malik Aamir Saeed,Hani Ahmad Fadzil

Mohamad et al. Acne analysis, grading and computational assessment

methods: an overview.[J] .Skin Res Technol, 2012, 18: 1-14.

[3] 鞠强 . 中国痤疮治疗指南(2019 修订版)[J]. 临床皮

肤科杂志 ,2019,48(09):583-588.

[4] 赵俊英 . 中西医结合痤疮诊治专家共识 [J]. 实用皮肤

病学杂志 ,2021,14(05):257-260.

[5] Moradi Tuchayi Sara,Makrantonaki Evgenia,Ganceviciene

Ruta et al. Acne vulgaris.[J].Nat Rev Dis Primers, 2015, 1: 15029.

[6] Thiboutot DM, Dréno B, Abanmi A et al. Practical

management of acne for clinicians: An international consensus

from the Global Alliance to Improve Outcomes in Acne.[J].J Am

Acad Dermatol. 2018 Feb;78(2 Suppl 1):S1-S23.e1. DIO:10.1016/

j.jaad.2017.09.078.

[7] Adityan Balaji,Kumari Rashmi,Thappa Devinder

Mohan,Scoring systems in acne vulgaris.[J] .Indian J Dermatol

Venereol Leprol, 2009, 75: 323-6.

[8] Bernardis Elena,Shou Haochang,Barbieri John S et al.

Development and Initial Validation of a Multidimensional Acne

Global Grading System Integrating Primary Lesions and Secondary

Changes.[J].JAMA Dermatol, 2020, 156: 296-302. DIO:10.1001/

jamadermatol.2019.4668

[9] Lin Yi,Jiang Jingchi,Ma Zhaoyang et al. KIEGLFN:

A unified acne grading framework on face images.[J].Comput

Methods Programs Biomed, 2022, 221: 106911.

[10] Li Jiaqi,Du Dan,Zhang Jianwei et al. Development

and validation of an artificial intelligence-powered acne

grading system incorporating lesion identification.[J] .Front Med

(Lausanne), 2023, 10: 1255704.

[11] Pakornphadungsit Kallapan,Harnchoowong

Sarawin,Wattanakrai Penpun,Evaluation of an Acne Severity

Grading Self-Assessment System Suitable for the Thai Population

- A Pilot Study.[J] .Clin Cosmet Investig Dermatol, 2023, 16:

3171-3179.

[12] Tan Jerry K L,Jones Emily,Allen Elizabeth et al.

Evaluation of essential clinical components and features of current

acne global grading scales.[J] .J Am Acad Dermatol, 2013, 69:

754-761. DIO:10.1016/j.jaad.2013.07.029

[13] Lim Ziying Vanessa,Akram Farhan,Ngo Cuong Phuc

et al. Automated grading of acne vulgaris by deep learning with

convolutional neural networks.[J] .Skin Res Technol, 2020, 26:

187-192. DIO:10.1111/srt.12794

[14] Lucchina L C,Kollias N,Gillies R et al. Fluorescence

photography in the evaluation of acne.[J] .J Am Acad Dermatol,

1996, 35: 58-63. DIO:10.1016/S0190-9622(96)90497-1

[15] Phillips S B,Kollias N,Gillies R et al. Polarized light

photography enhances visualization of inflammatory lesions

of acne vulgaris.[J] .J Am Acad Dermatol, 1997, 37: 948-52.

DIO:10.1016/s0190-9622(97)70070-7

[16] Rizova E,Kligman A,New photographic techniques for clinical

evaluation of acne.[J] .J Eur Acad Dermatol Venereol, 2001, null: 13-8.

[17] Do Thy Thy,Zarkhin Semyon,Orringer Jeffrey S et al.

Computer-assisted alignment and tracking of acne lesions indicate

that most inflammatory lesions arise from comedones and de novo.

[J] .J Am Acad Dermatol, 2008, 58: 603-8.

[18] Masahiro N, Tsumura N, Miyake Y. Why multispectral

imaging in medicine. J Imaging Sci Technol 2004; 48: 125–129.

[19] Fujii Hideaki,Yanagisawa Takashi,Mitsui Masanori et al.

Extraction of acne lesion in acne patients from multispectral images.[J]

.Annu Int Conf IEEE Eng Med Biol Soc, 2008, 2008: 4078-81.

[20] Seité Sophie,Khammari Amir,Benzaquen Michael et al.

Development and accuracy of an artificial intelligence algorithm

for acne grading from smartphone photographs.[J] .Exp Dermatol,

2019, 28: 1252-1257.

[21] Li Jiaqi,Du Dan,Zhang Jianwei et al. Development

and validation of an artificial intelligence-powered acne

grading system incorporating lesion identification.[J] .Front Med

(Lausanne), 2023, 10: 1255704.

[22] Min Seonguk,Kong Hyoun-joong,Yoon Chiyul et al.

Development and evaluation of an automatic acne lesion detection

program using digital image processing.[J] .Skin Res Technol,

2013, 19: e423-32.

[23] 温妮 . 基于卷积神经网络的面部痤疮分级评估方法

研究 [D]. 北京协和医学院 ,2018.

[24] 吴意平 , 陈海龙 , 张大磊 . 深度学习方法建立痤疮

分级系统的探索 [J]. 中国医药 ,2018,13(04):606-608.

[25] Shen Xiaolei,Zhang Jiachi,Yan Chenjun et al. An

Automatic Diagnosis Method of Facial Acne Vulgaris Based

on Convolutional Neural Network.[J] .Sci Rep, 2018, 8: 5839.

DIO:10.1038/s41598-018-24204-6

[26] Hayashi Nobukazu,Suh Dae Hun,Akamatsu Hirohiko et al.

Evaluation of the newly established acne severity classification among

Japanese and Korean dermatologists.[J] .J Dermatol, 2008, 35: 261-3.

[27] Tan J K L,Zhang X,Jones E et al. Correlation of

photographic images from the Leeds revised acne grading system

with a six-category global acne severity scale.[J] .J Eur Acad

Dermatol Venereol, 2013, 27: e414-9.

[28] Liu Shuai,Fan Yusi,Duan Meiyu et al. AcneGrader: An

ensemble pruning of the deep learning base models to grade acne.

[J] .Skin Res Technol, 2022, 28: 677-688.

[29] Seité Sophie,Khammari Amir,Benzaquen Michael et al.

Development and accuracy of an artificial intelligence algorithm

for acne grading from smartphone photographs.[J] .Exp Dermatol,

2019, 28: 1252-1257.

[30] Yu R, Chen M, Zhao H, Yang J, Li T, Cui Y.

Comparisons of Four Acne Grading Systems Recommended in

China, Korea, and Japan. Clin Cosmet Investig Dermatol. 2023 Jan

23;16:203-210. DIO: 10.2147/CCID.S400226.

[31] Clark Ashley K,Saric Suzana,Sivamani Raja K,Acne

Scars: How Do We Grade Them?[J] .Am J Clin Dermatol, 2018,

19: 139-144.


(3 摘要 Views, 37 PDF Downloads)

Refbacks

  • 当前没有refback。