皮肤影像与人工智能在痤疮诊断与分级中的应用
摘要
且主观性强,尤其对于微小或不典型皮损,不同医生的分级结果误差较大。近年来,随着皮肤影像及人工智能技术的迅速
发展,图像分析技术结合深度学习算法能够更好的识别、分析医学图像信息。本文将对皮肤影像及人工智能技术在痤疮分
级方面的研究进展进行综述。
关键词
全文:
PDF参考
[1] Zaenglein Andrea L,Pathy Arun L,Schlosser Bethanee J et
al. Guidelines of care for the management of acne vulgaris.[J].J Am
Acad Dermatol,2016,74:945-73.
[2] Ramli Roshaslinie,Malik Aamir Saeed,Hani Ahmad Fadzil
Mohamad et al. Acne analysis, grading and computational assessment
methods: an overview.[J] .Skin Res Technol, 2012, 18: 1-14.
[3] 鞠强 . 中国痤疮治疗指南(2019 修订版)[J]. 临床皮
肤科杂志 ,2019,48(09):583-588.
[4] 赵俊英 . 中西医结合痤疮诊治专家共识 [J]. 实用皮肤
病学杂志 ,2021,14(05):257-260.
[5] Moradi Tuchayi Sara,Makrantonaki Evgenia,Ganceviciene
Ruta et al. Acne vulgaris.[J].Nat Rev Dis Primers, 2015, 1: 15029.
[6] Thiboutot DM, Dréno B, Abanmi A et al. Practical
management of acne for clinicians: An international consensus
from the Global Alliance to Improve Outcomes in Acne.[J].J Am
Acad Dermatol. 2018 Feb;78(2 Suppl 1):S1-S23.e1. DIO:10.1016/
j.jaad.2017.09.078.
[7] Adityan Balaji,Kumari Rashmi,Thappa Devinder
Mohan,Scoring systems in acne vulgaris.[J] .Indian J Dermatol
Venereol Leprol, 2009, 75: 323-6.
[8] Bernardis Elena,Shou Haochang,Barbieri John S et al.
Development and Initial Validation of a Multidimensional Acne
Global Grading System Integrating Primary Lesions and Secondary
Changes.[J].JAMA Dermatol, 2020, 156: 296-302. DIO:10.1001/
jamadermatol.2019.4668
[9] Lin Yi,Jiang Jingchi,Ma Zhaoyang et al. KIEGLFN:
A unified acne grading framework on face images.[J].Comput
Methods Programs Biomed, 2022, 221: 106911.
[10] Li Jiaqi,Du Dan,Zhang Jianwei et al. Development
and validation of an artificial intelligence-powered acne
grading system incorporating lesion identification.[J] .Front Med
(Lausanne), 2023, 10: 1255704.
[11] Pakornphadungsit Kallapan,Harnchoowong
Sarawin,Wattanakrai Penpun,Evaluation of an Acne Severity
Grading Self-Assessment System Suitable for the Thai Population
- A Pilot Study.[J] .Clin Cosmet Investig Dermatol, 2023, 16:
3171-3179.
[12] Tan Jerry K L,Jones Emily,Allen Elizabeth et al.
Evaluation of essential clinical components and features of current
acne global grading scales.[J] .J Am Acad Dermatol, 2013, 69:
754-761. DIO:10.1016/j.jaad.2013.07.029
[13] Lim Ziying Vanessa,Akram Farhan,Ngo Cuong Phuc
et al. Automated grading of acne vulgaris by deep learning with
convolutional neural networks.[J] .Skin Res Technol, 2020, 26:
187-192. DIO:10.1111/srt.12794
[14] Lucchina L C,Kollias N,Gillies R et al. Fluorescence
photography in the evaluation of acne.[J] .J Am Acad Dermatol,
1996, 35: 58-63. DIO:10.1016/S0190-9622(96)90497-1
[15] Phillips S B,Kollias N,Gillies R et al. Polarized light
photography enhances visualization of inflammatory lesions
of acne vulgaris.[J] .J Am Acad Dermatol, 1997, 37: 948-52.
DIO:10.1016/s0190-9622(97)70070-7
[16] Rizova E,Kligman A,New photographic techniques for clinical
evaluation of acne.[J] .J Eur Acad Dermatol Venereol, 2001, null: 13-8.
[17] Do Thy Thy,Zarkhin Semyon,Orringer Jeffrey S et al.
Computer-assisted alignment and tracking of acne lesions indicate
that most inflammatory lesions arise from comedones and de novo.
[J] .J Am Acad Dermatol, 2008, 58: 603-8.
[18] Masahiro N, Tsumura N, Miyake Y. Why multispectral
imaging in medicine. J Imaging Sci Technol 2004; 48: 125–129.
[19] Fujii Hideaki,Yanagisawa Takashi,Mitsui Masanori et al.
Extraction of acne lesion in acne patients from multispectral images.[J]
.Annu Int Conf IEEE Eng Med Biol Soc, 2008, 2008: 4078-81.
[20] Seité Sophie,Khammari Amir,Benzaquen Michael et al.
Development and accuracy of an artificial intelligence algorithm
for acne grading from smartphone photographs.[J] .Exp Dermatol,
2019, 28: 1252-1257.
[21] Li Jiaqi,Du Dan,Zhang Jianwei et al. Development
and validation of an artificial intelligence-powered acne
grading system incorporating lesion identification.[J] .Front Med
(Lausanne), 2023, 10: 1255704.
[22] Min Seonguk,Kong Hyoun-joong,Yoon Chiyul et al.
Development and evaluation of an automatic acne lesion detection
program using digital image processing.[J] .Skin Res Technol,
2013, 19: e423-32.
[23] 温妮 . 基于卷积神经网络的面部痤疮分级评估方法
研究 [D]. 北京协和医学院 ,2018.
[24] 吴意平 , 陈海龙 , 张大磊 . 深度学习方法建立痤疮
分级系统的探索 [J]. 中国医药 ,2018,13(04):606-608.
[25] Shen Xiaolei,Zhang Jiachi,Yan Chenjun et al. An
Automatic Diagnosis Method of Facial Acne Vulgaris Based
on Convolutional Neural Network.[J] .Sci Rep, 2018, 8: 5839.
DIO:10.1038/s41598-018-24204-6
[26] Hayashi Nobukazu,Suh Dae Hun,Akamatsu Hirohiko et al.
Evaluation of the newly established acne severity classification among
Japanese and Korean dermatologists.[J] .J Dermatol, 2008, 35: 261-3.
[27] Tan J K L,Zhang X,Jones E et al. Correlation of
photographic images from the Leeds revised acne grading system
with a six-category global acne severity scale.[J] .J Eur Acad
Dermatol Venereol, 2013, 27: e414-9.
[28] Liu Shuai,Fan Yusi,Duan Meiyu et al. AcneGrader: An
ensemble pruning of the deep learning base models to grade acne.
[J] .Skin Res Technol, 2022, 28: 677-688.
[29] Seité Sophie,Khammari Amir,Benzaquen Michael et al.
Development and accuracy of an artificial intelligence algorithm
for acne grading from smartphone photographs.[J] .Exp Dermatol,
2019, 28: 1252-1257.
[30] Yu R, Chen M, Zhao H, Yang J, Li T, Cui Y.
Comparisons of Four Acne Grading Systems Recommended in
China, Korea, and Japan. Clin Cosmet Investig Dermatol. 2023 Jan
23;16:203-210. DIO: 10.2147/CCID.S400226.
[31] Clark Ashley K,Saric Suzana,Sivamani Raja K,Acne
Scars: How Do We Grade Them?[J] .Am J Clin Dermatol, 2018,
19: 139-144.
(3 摘要 Views, 37 PDF Downloads)
Refbacks
- 当前没有refback。