机器学习在肝脏疾病中的应用现状和未来趋势
摘要
风险评估和治疗决策中。本文综述了机器学习在肝脏疾病中的关键应用,包括寻找肝癌的潜在标志物、预测肝脏术后并发症、
识别肝脏疾病的早期危险因素,以及结合影像组学等方面的应用现状与未来趋势。通过分析现有研究,探讨机器学习在肝
脏疾病管理中的潜力与挑战。
关键词
全文:
PDF参考
[1] Hou N, Li M, He L, Xie B, Wang L, Zhang R, Yu Y, Sun
X, Pan Z, Wang K. Predicting 30-days mortality for MIMIC-
III patients with sepsis-3: a machine learning approach using
XGboost. J Transl Med. 2020 Dec 7;18(1):462. doi: 10.1186/
s12967-020-02620-5.
[2] Du M, Haag DG, Lynch JW, Mittinty MN. Comparison of
the Tree-Based Machine Learning Algorithms to Cox Regression
in Predicting the Survival of Oral and Pharyngeal Cancers:
Analyses Based on SEER Database. Cancers (Basel). 2020 Sep
29;12(10):2802. doi: 10.3390/cancers12102802.
[3] van der Velden BHM, Kuijf HJ, Gilhuijs KGA,
Viergever MA. Explainable artificial intelligence (XAI) in deep
learning-based medical image analysis. Med Image Anal. 2022
Jul;79:102470. doi: 10.1016/j.media.2022.102470. Epub 2022
May 4. PMID: 35576821.
[4] Forner A, Reig M, Bruix J. Hepatocellular carcinoma.
Lancet. 2018 Mar 31;391(10127):1301-1314. doi: 10.1016/
S0140-6736(18)30010-2. Epub 2018 Jan 5. PMID: 29307467.
[5] Lv JH, Hou AJ, Zhang SH, Dong JJ, Kuang HX, Yang
L, Jiang H. WGCNA combined with machine learning to find
potential biomarkers of liver cancer. Medicine (Baltimore). 2023
Dec 15;102(50):e36536. doi: 10.1097/MD.0000000000036536.
PMID: 38115320; PMCID: PMC10727608.
[6] Gupta R, Kleinjans J, Caiment F. Identifying novel
transcript biomarkers for hepatocellular carcinoma (HCC) using
RNA-Seq datasets and machine learning. BMC Cancer. 2021
Aug 27;21(1):962. doi: 10.1186/s12885-021-08704-9. PMID:
34445986; PMCID: PMC8394105.
[7] Matboli M, Diab GI, Saad M, Khaled A, Roushdy M,
Ali M, ELsawi HA, Aboughaleb IH. Machine-Learning-Based
Identification of Key Feature RNA-Signature Linked to Diagnosis
of Hepatocellular Carcinoma. J Clin Exp Hepatol. 2024 Nov-
Dec;14(6):101456. doi: 10.1016/j.jceh.2024.101456. Epub 2024
Jun 14. PMID: 39055616; PMCID: PMC11268357.
[8] Tu DY, Cao J, Zhou J, Su BB, Wang SY, Jiang GQ, Jin
SJ, Zhang C, Peng R, Bai DS. Identification of the mitophagy-
related diagnostic biomarkers in hepatocellular carcinoma based
on machine learning algorithm and construction of prognostic
model. Front Oncol. 2023 Mar 1;13:1132559. doi: 10.3389/
fonc.2023.1132559. PMID: 36937391; PMCID: PMC10014545.
[9] Burchard PR, Dave YA, Loria AP, Parikh NB, Pineda-
Solis K, Ruffolo LI, Strawderman M, Schoeniger LO, Galka E,
Tomiyama K, Orloff MS, Carpizo DR, Linehan DC, Hernandez-
Alejandro R. Early postoperative ERAS compliance predicts
decreased length of stay and complications following liver
resection. HPB (Oxford). 2022 Sep;24(9):1425-1432. doi:
10.1016/j.hpb.2022.01.008. Epub 2022 Jan 25. PMID: 35135723.
[10] Liu Z, Liu Y, Zhang W, Hong Y, Meng J, Wang J, Zheng
S, Xu X. Deep learning for prediction of hepatocellular carcinoma
recurrence after resection or liver transplantation: a discovery
and validation study. Hepatol Int. 2022 Jun;16(3):577-589. doi:
10.1007/s12072-022-10321-y. Epub 2022 Mar 29. PMID:
35352293; PMCID: PMC9174321.
[11] Serenari M, Han KH, Ravaioli F, Kim SU, Cucchetti
A, Han DH, Odaldi F, Ravaioli M, Festi D, Pinna AD, Cescon
M. A nomogram based on liver stiffness predicts postoperative
complications in patients with hepatocellular carcinoma. J Hepatol.
2020 Oct;73(4):855-862. doi: 10.1016/j.jhep.2020.04.032. Epub
2020 Apr 30. PMID: 32360997.
[12] Suárez M, Gil-Rojas S, Martínez-Blanco P, Torres
AM, Ramón A, Blasco-Segura P, Torralba M, Mateo J. Machine
Learning-Based Assessment of Survival and Risk Factors in Non-
Alcoholic Fatty Liver Disease-Related Hepatocellular Carcinoma
for Optimized Patient Management. Cancers (Basel). 2024 Mar
10;16(6):1114. doi: 10.3390/cancers16061114. PMID: 38539449;
PMCID: PMC10969326.
[13] Peng HY, Duan SJ, Pan L, Wang MY, Chen JL, Wang
YC, Yao SK. Development and validation of machine learning
models for nonalcoholic fatty liver disease. Hepatobiliary
Pancreat Dis Int. 2023 Dec;22(6):615-621. doi: 10.1016/
j.hbpd.2023.03.009. Epub 2023 Mar 25. PMID: 37005147.
[14]Ji W, Xue M, Zhang Y, Yao H, Wang Y. A Machine
Learning Based Framework to Identify and Classify Non-alcoholic
Fatty Liver Disease in a Large-Scale Population. Front Public
Health. 2022 Apr 4;10:846118. doi: 10.3389/fpubh.2022.846118.
PMID: 35444985; PMCID: PMC9013842.
[15] Xia T, Zhao B, Li B, Lei Y, Song Y, Wang Y, Tang T,
Ju S. MRI-Based Radiomics and Deep Learning in Biological
Characteristics and Prognosis of Hepatocellular Carcinoma:
Opportunities and Challenges. J Magn Reson Imaging. 2024
Mar;59(3):767-783. doi: 10.1002/jmri.28982. Epub 2023 Aug 30.
PMID: 37647155.
[16] Bo Z, Chen B, Zhao Z, He Q, Mao Y, Yang Y, Yao F,
Yang Y, Chen Z, Yang J, Yu H, Ma J, Wu L, Chen K, Wang L,
Wang M, Shi Z, Yao X, Dong Y, Shi X, Shan Y, Yu Z, Wang Y,
Chen G. Prediction of Response to Lenvatinib Monotherapy for
Unresectable Hepatocellular Carcinoma by Machine Learning
Radiomics: A Multicenter Cohort Study. Clin Cancer Res. 2023
May 1;29(9):1730-1740. doi: 10.1158/1078-0432.CCR-22-
2784. PMID: 36787379.
[17] Bresson-Hadni S, Spahr L, Chappuis F. Hepatic
Alveolar Echinococcosis. Semin Liver Dis. 2021 Aug;41(3):393-
408. doi: 10.1055/s-0041-1730925. Epub 2021 Jun 23. PMID:
34161992.
[18] Nunnari G, Pinzone MR, Gruttadauria S, Celesia BM,
Madeddu G, Malaguarnera G, Pavone P, Cappellani A, Cacopardo
B. Hepatic echinococcosis: clinical and therapeutic aspects. World
J Gastroenterol. 2012 Apr 7;18(13):1448-58. doi: 10.3748/wjg.
v18.i13.1448. PMID: 22509076; PMCID: PMC3319940.
[19] Wang Z, Bian H, Li J, Xu J, Fan H, Wu X, Cao Y,
Guo B, Xu X, Wang H, Zhang L, Zhou H, Fan J, Ren Y, Geng
Y, Feng X, Li L, Wei L, Zhang X. Detection and subtyping of
hepatic echinococcosis from plain CT images with deep learning:
a retrospective, multicentre study. Lancet Digit Health. 2023
Nov;5(11):e754-e762. doi: 10.1016/S2589-7500(23)00136-X.
Epub 2023 Sep 26. PMID: 37770335.
[20] 汪占金 , 曹云太 , 乔木 , 等 . 基于机器学习的 CT
平扫影像组学鉴别 CE1 型肝囊型包虫病与肝囊肿 [J]. 临
床 放 射 学 杂 志 ,2024,43(09):1512-1518.DOI:10.13437/j.cnki.
jcr.2024.09.014.
[21] 任波 . 基于影像组学评价肝泡型包虫病组织特征和
生物活性的研究 [D]. 新疆医科大学 ,2021.DOI:10.27433/d.cnki.
gxyku.2021.000001.
[22] Naimi AI, Balzer LB. Stacked generalization:
an introduction to super learning. Eur J Epidemiol. 2018
May;33(5):459-464. doi: 10.1007/s10654-018-0390-z. Epub
2018 Apr 10.
[23] Sun L, Yang L, Liu X, Tang L, Zeng Q, Gao Y, Chen
Q, Liu Z, Peng B. Optimization of Cervical Cancer Screening:
A Stacking-Integrated Machine Learning Algorithm Based on
Demographic, Behavioral, and Clinical Factors. Front Oncol. 2022
Feb 15;12:821453. doi: 10.3389/fonc.2022.821453.
[24] Barragán-Montero A, Bibal A, Dastarac MH, Draguet C,
Valdés G, Nguyen D, Willems S, Vandewinckele L, Holmström
M, Löfman F, Souris K, Sterpin E, Lee JA. Towards a safe and
efficient clinical implementation of machine learning in radiation
oncology by exploring model interpretability, explainability
and data-model dependency. Phys Med Biol. 2022 May
27;67(11):10.1088/1361-6560/ac678a. doi: 10.1088/1361-6560/
ac678a. PMID: 35421855; PMCID: PMC9870296.
(16 摘要 Views, 57 PDF Downloads)
Refbacks
- 当前没有refback。