干细胞在心血管疾病的研究现状
摘要
脏移植 , 然而药物治疗和介入治疗、外科治疗等治疗 , 对心脏纤维化、心室重构、心肌病无明显效果。心脏移植则是终末期
心力衰竭的有效解决方案,但供体少,花费大,有能力开展心脏移植的医疗机构少。近年来 , 干细胞治疗已成为一个非常
有发展前途科学研究课题。干细胞在诱导和分化作用下,能以定向分化的方式产生收缩功能心肌细胞、内皮细胞、平滑肌
细胞等,使其能直接进入缺血坏死心肌区域 , 促进心肌和心脑血管再生反应,不断提升心功能,所以干细胞将成为生物医
学研究的重点方向 [1]。本文就干细胞在心血管疾病的应用现状作一综述 , 同时开展心血管机制的研究、诊断工作,为治疗
方案的规划提供方向。
关键词
全文:
PDF参考
[1] 张海峰 , 韦植 . 干细胞在心血管疾病治疗中的应用研
究 [J]. 微创医学 , 2022, 17 (03): 267-271.
[2]Campbell K H S, McWhir J, Ritchie W A, et al. Sheep
cloned by nuclear transfer from a cultured cell line[J]. Nature,
1996, 380(6569): 64-66.
[3]Hwang W S, Ryu Y J, Park J H, et al. Evidence of a
pluripotent human embryonic stem cell line derived from a cloned
blastocyst[J]. Science, 2004, 303(5664): 1669-1674.
[4]Tada M, Takahama Y, Abe K, et al. Nuclear
reprogramming of somatic cells by in vitro hybridization with ES
cells[J]. Current Biology, 2001, 11(19): 1553-1558.
[5]Takahashi K, Tanabe K, Ohnuki M, et al. Induction of
pluripotent stem cells from adult human fibroblasts by defined
factors[J]. cell, 2007, 131(5): 861-872.
[6]Yu J, Vodyanik M A, Smuga-Otto K, et al. Induced
pluripotent stem cell lines derived from human somatic cells[J].
science, 2007, 318(5858): 1917-1920.
[7]Müller P, Lemcke H, David R. Stem cell therapy in heart
diseases–cell types, mechanisms and improvement strategies[J].
Cellular Physiology and Biochemistry, 2018, 48(6): 2607-2655.
[8]Tsao C W, Aday A W, Almarzooq Z I, et al. Heart disease
and stroke statistics—2022 update: a report from the American
Heart Association[J]. Circulation, 2022, 145(8): e153-e639.
[9]Bakhtiyar S S, Godfrey E L, Ahmed S, et al. Survival on
the heart transplant waiting list[J]. JAMA cardiology, 2020, 5(11):
1227-1235.
[10]Soma Y, Tani H, Morita-Umei Y, et al. Pluripotent
stem cell-based cardiac regenerative therapy for heart failure[J].
Journal of Molecular and Cellular Cardiology, 2024, 187: 90-100.
[11]Thomson J A, Itskovitz-Eldor J, Shapiro S S, et al.
Embryonic stem cell lines derived from human blastocysts[J].
science, 1998, 282(5391): 1145-1147.
[12]Takahashi K, Tanabe K, Ohnuki M, et al. Induction of
pluripotent stem cells from adult human fibroblasts by defined
factors[J]. cell, 2007, 131(5): 861-872.
[13]Zakrzewski W, Dobrzyński M, Szymonowicz M, et al.
Stem cells: past, present, and future[J]. Stem cell research &
therapy, 2019, 10(1): 1-22.
[14]Yamanaka S. Pluripotent stem cell-based cell therapy—
promise and challenges[J]. Cell stem cell, 2020, 27(4): 523-531.
[15]Zhao T, Zhang Z N, Rong Z, et al. Immunogenicity of
induced pluripotent stem cells[J]. Nature, 2011, 474(7350): 212-
215.
[16]Aboul-Soud M A M, Alzahrani A J, Mahmoud A.
Induced pluripotent stem cells (iPSCs)—roles in regenerative
therapies, disease modelling and drug screening[J]. Cells, 2021,
10(9): 2319.
[17]Araki R, Uda M, Hoki Y, et al. Negligible immunogenicity
of terminally differentiated cells derived from induced pluripotent
or embryonic stem cells[J]. Nature, 2013, 494(7435): 100-104.
[18]Mandai M, Watanabe A, Kurimoto Y, et al. Autologous
induced stem-cell–derived retinal cells for macular
degeneration[J]. New England Journal of Medicine, 2017, 376(11):
1038-1046.
[ 1 9 ] T a y l o r A W . O c u l a r i m m u n e p r i v i l e g e a n d
transplantation[J]. Frontiers in immunology, 2016, 7: 172518.
[20]Li W, Englund E, Widner H, et al. Extensive graftderived dopaminergic innervation is maintained 24 years after
transplantation in the degenerating parkinsonian brain[J].
Proceedings of the National Academy of Sciences, 2016, 113(23):
6544-6549.
[21]Sato Y, Bando H, Di Piazza M, et al. Tumorigenicity
assessment of cell therapy products: The need for global consensus
and points to consider[J]. Cytotherapy, 2019, 21(11): 1095-1111.
[22]Kunitomi A, Yuasa S, Sugiyama F, et al. H1foo has a
pivotal role in qualifying induced pluripotent stem cells[J]. Stem
Cell Reports, 2016, 6(6): 825-833.
[23]Tesar P J, Chenoweth J G, Brook F A, et al. New cell
lines from mouse epiblast share defining features with human
embryonic stem cells[J]. Nature, 2007, 448(7150): 196-199.
[24]Gao Y, Pu J. Differentiation and application of human
pluripotent stem cells derived cardiovascular cells for treatment of
heart diseases: Promises and challenges[J]. Frontiers in Cell and
Developmental Biology, 2021, 9: 658088.
[25]Jiang Y, Yu M, Song Z F, et al. Targeted Delivery of
Mesenchymal Stem Cell-Derived Bioinspired Exosome-Mimetic
Nanovesicles with Platelet Membrane Fusion for Atherosclerotic
Treatment[J]. International Journal of Nanomedicine, 2024: 2553-
2571.
[26]Koutela A, Loudos G, Rouchota M, et al. Mesenchymal
Stem Cell Transplantation Has a Regenerative Effect in Ischemic
Myocardium: An Experimental Rat Model Evaluated by SPECTCT Assessment[J]. Diagnostics, 2024, 14(4): 401.
[27]Deng Y, Li Y, Chu Z, et al. Exosomes from umbilical
cord-derived mesenchymal stem cells combined with gelatin
methacryloyl inhibit vein graft restenosis by enhancing endothelial
functions[J]. Journal of Nanobiotechnology, 2023, 21(1): 380.
[28]Pittenger M F, Mackay A M, Beck S C, et al. Multilineage
potential of adult human mesenchymal stem cells[J]. science,
1999, 284(5411): 143-147.
[29]Karantalis V, DiFede D L, Gerstenblith G, et al.
Autologous mesenchymal stem cells produce concordant
improvements in regional function, tissue perfusion, and fibrotic
burden when administered to patients undergoing coronary
artery bypass grafting: the Prospective Randomized Study of
Mesenchymal Stem Cell Therapy in Patients Undergoing Cardiac
Surgery (PROMETHEUS) trial[J]. Circulation research, 2014,
114(8): 1302-1310.
[30]Mathiasen A B, Qayyum A A, Jørgensen E, et al. Bone
marrow-derived mesenchymal stromal cell treatment in patients
with severe ischaemic heart failure: a randomized placebocontrolled trial (MSC-HF trial)[J]. European heart journal, 2015,
36(27): 1744-1753.
[31]Chullikana A, Majumdar A S, Gottipamula S, et al.
Randomized, double-blind, phase I/II study of intravenous
allogeneic mesenchymal stromal cells in acute myocardial
infarction[J]. Cytotherapy, 2015, 17(3): 250-261.
[32]Jansen of Lorkeers S J, Eding J E C, Vesterinen H M,
et al. Similar effect of autologous and allogeneic cell therapy for
ischemic heart disease: systematic review and meta-analysis of
large animal studies[J]. Circulation research, 2015, 116(1): 80-86.
[33]Hare J M, DiFede D L, Rieger A C, et al. Randomized
comparison of allogeneic versus autologous mesenchymal stem
cells for nonischemic dilated cardiomyopathy: POSEIDON-DCM
trial[J]. Journal of the American College of Cardiology, 2017,
69(5): 526-537.
[34]Błyszczuk P, Zup**er C, Costa A, et al. Activated
cardiac fibroblasts control contraction of human fibrotic cardiac
microtissues by a β-adrenoreceptor-dependent mechanism[J].
Cells, 2020, 9(5): 1270.
[35]Menasché P, Hagège A A, Vilquin J T, et al.
Autologous skeletal myoblast transplantation for severe
postinfarction left ventricular dysfunction[J]. Journal of the
American College of Cardiology, 2003, 41(7): 1078-1083.
[36]Smits P C, van Geuns R J M, Poldermans D, et al.
Catheter-based intramyocardial injection of autologous skeletal
myoblasts as a primary treatment of ischemic heart failure: clinical
experience with six-month follow-up[J]. Journal of the American
College of Cardiology, 2003, 42(12): 2063-2069.
[37]Herreros J, Prósper F, Perez A, et al. Autologous
intramyocardial injection of cultured skeletal muscle-derived stem
cells in patients with non-acute myocardial infarction[J]. European
Heart Journal, 2003, 24(22): 2012-2020.
[38]Paci M, Penttinen K, Pekkanen-Mattila M, et al.
Arrhythmia mechanisms in human induced pluripotent stem
cell–derived cardiomyocytes[J]. Journal of Cardiovascular
Pharmacology, 2021, 77(3): 300-316.
[39] 李莉 . 心肌梗死应用骨髓间充质干细胞治疗时不同
移植途径对疗效的影响分析 [J]. 中国医药指南 , 2012, 10 (35):
402-403. DOI:10.15912/j.cnki.gocm.2012.35.245.
[40]Mathiasen A B, Qayyum A A, Jørgensen E, et al. Bone
marrow-derived mesenchymal stromal cell treatment in patients
with severe ischaemic heart failure: a randomized placebocontrolled trial (MSC-HF trial)[J]. European heart journal, 2015,
36(27): 1744-1753.
[41]Traverse J H, Henry T D, Pepine C J, et al. Effect of the
use and timing of bone marrow mononuclear cell delivery on left
ventricular function after acute myocardial infarction: the TIME
randomized trial[J]. Jama, 2012, 308(22): 2380-2389.
[42]Perin E C, Willerson J T, Pepine C J, et al. Effect of
transendocardial delivery of autologous bone marrow mononuclear
cells on functional capacity, left ventricular function, and perfusion
in chronic heart failure: the FOCUS-CCTRN trial[J]. Jama, 2012,
307(16): 1717-1726.
[43]Bartunek J, Terzic A, Davison B A, et al. Cardiopoietic
cell therapy for advanced ischaemic heart failure: results at
39 weeks of the prospective, randomized, double blind, shamcontrolled CHART-1 clinical trial[J]. European heart journal,
2017, 38(9): 648-660.
[44]Kobayashi H, Tohyama S, Kanazawa H, et al.
Intracoronary transplantation of pluripotent stem cell-derived
cardiomyocytes: Inefficient procedure for cardiac regeneration[J].
Journal of Molecular and Cellular Cardiology, 2023, 174: 77-87.
[45]Menasché P, Vanneaux V, Hagège A, et al.
Transplantation of human embryonic stem cell–derived
cardiovascular progenitors for severe ischemic left ventricular
dysfunction[J]. Journal of the American College of Cardiology,
2018, 71(4): 429-438.
[46]Miyagawa S, Kainuma S, Kawamura T, et al. Case report:
Transplantation of human induced pluripotent stem cell-derived
cardiomyocyte patches for ischemic cardiomyopathy[J]. Frontiers
in cardiovascular medicine, 2022, 9: 950829.
[47]Zhang H, Xue Y, Pan T, et al. Epicardial injection
of allogeneic human-induced-pluripotent stem cell-derived
cardiomyocytes in patients with advanced heart failure: Protocol
for a phase I/IIa dose-escalation clinical trial[J]. BMJ open, 2022,
12(5): e056264.
[48]Nakamura K, Neidig L E, Yang X, et al. Pharmacologic
therapy for engraftment arrhythmia induced by transplantation of
human cardiomyocytes[J]. Stem Cell Reports, 2021, 16(10): 2473-
2487.
[49]Kawamura M, Miyagawa S, Miki K, et al. Feasibility,
safety, and therapeutic efficacy of human induced pluripotent
stem cell-derived cardiomyocyte sheets in a porcine ischemic
cardiomyopathy model[J]. Circulation, 2012, 126(11_suppl_1):
S29-S37.
[50]Kawamura T, Miyagawa S, Fukushima S, et al.
Cardiomyocytes derived from MHC-homozygous induced
pluripotent stem cells exhibit reduced allogeneic immunogenicity
in MHC-matched non-human primates[J]. Stem cell reports,
2016, 6(3): 312-320.
[51]Riegler J, Tiburcy M, Ebert A, et al. Human engineered
heart muscles engraft and survive long term in a rodent myocardial
infarction model[J]. Circulation research, 2015, 117(8): 720-730.
[52]Dababneh S, Hamledari H, Maaref Y, et al. Advances
in Hypertrophic Cardiomyopathy Disease Modeling using Human
iPSC-derived Cardiomyocytes[J]. Canadian Journal of Cardiology,
2023.
[53]Sarı E Ç K, Ovalı E. Factors Affecting the Population of
Mesenchymal Stem Cells in Adipose-Derived Stromal Vascular
Fraction[J]. Balkan Medical Journal, 2022, 39(6): 386.
(25 摘要 Views, 53 PDF Downloads)
Refbacks
- 当前没有refback。