开放期刊系统

生物纳米材料对细胞的影响及其在医学领域的应用

杜 佳, 李 佳欣, 吴 妍颖, 危 子璇, 郎明 非*

摘要

如今纳米材料已经广泛应用于药物递送系统、生物传感器、干细胞医学、生物医学、纳米毒性研究、组织工程等
领域。目前,生物纳米材料如何与细胞或者细胞器,组织器官之间进行相互作用以及探究其机制成为了我们亟待解决的问题。
本综述将从细胞宏观的反应(细胞周期,增殖,分化,粘附,凋亡等)做为起点来研究纳米材料对细胞行为的影响,进而
探索纳米材料的分子生物学机制并探讨其在生物医学领域的应用。

关键词

生物纳米材料;细胞周期;凋亡;癌症

全文:

PDF

参考

[1]NAG S, MITRA O, TRIPATHI G, et al. Nanomaterialsassisted photothermal therapy for breast cancer: State-of-the-

art advances and future perspectives [J]. Photodiagnosis Photodyn

Ther, 2024, 45: 103959.

[2]FOULKES R, MAN E, THIND J, et al. The regulation of

nanomaterials and nanomedicines for clinical application: current

and future perspectives [J]. Biomater Sci, 2020, 8(17): 4653-4664.

[3]LI B, SHAO H, GAO L, et al. Nano-drug co-delivery

system of natural active ingredients and chemotherapy drugs for

cancer treatment: a review [J]. Drug Deliv, 2022, 29(1): 2130-

2161.

[4]SHENDE P, PATEL D. Potential of Tribological Properties

of Metal Nanomaterials in Biomedical Applications [J]. Adv Exp

Med Biol, 2020, 1237: 121-134.

[5]RASMUSSEN K, RAUSCHER H, MECH A, et al.

Physico-chemical properties of manufactured nanomaterials -

Characterisation and relevant methods. An outlook based on the

OECD Testing Programme [J]. Regul Toxicol Pharmacol, 2018, 92:

8-28.

[6]LIU X Q, TANG R Z. Biological responses to

nanomaterials: understanding nano-bio effects on cell behaviors

[J]. Drug Deliv, 2017, 24(sup1): 1-15.

[7]XU Y, ZHENG H, SCHUMACHER D, et al. Recent

Advancements of Specific Functionalized Surfaces of Magnetic

Nano- and Microparticles as a Theranostics Source in Biomedicine

[J]. ACS Biomater Sci Eng, 2021, 7(6): 1914-1932.

[8]TAN C, CAO X, WU X J, et al. Recent Advances in

Ultrathin Two-Dimensional Nanomaterials [J]. Chem Rev, 2017,

117(9): 6225-6331.

[9]THEODOROU I G, MüLLER K H, CHEN S, et al. Silver

Nanowire Particle Reactivity with Human Monocyte-Derived

Macrophage Cells: Intracellular Availability of Silver Governs

Their Cytotoxicity [J]. ACS Biomater Sci Eng, 2017, 3(10): 2336-

2347.

[10]YIN I X, ZHANG J, ZHAO I S, et al. The Antibacterial

Mechanism of Silver Nanoparticles and Its Application in

Dentistry [J]. Int J Nanomedicine, 2020, 15: 2555-2562.

[11]N A, AK S, S S, et al. Biosynthesized composites of AuAg nanoparticles using Trapa peel extract induced [J]. Drug Chem

Toxicol, 2019, 42(1): 43-53.

[12]VANGIJZEGEM T, STANICKI D, LAURENT S.

Magnetic iron oxide nanoparticles for drug delivery: applications

and characteristics [J]. Expert Opin Drug Deliv, 2019, 16(1): 69-

78.

[13]GEPPERT M, HIMLY M. Iron Oxide Nanoparticles in

Bioimaging - An Immune Perspective [J]. Front Immunol, 2021,

12: 688927.

[14]VAKILI-GHARTAVOL R, MOMTAZI-BOROJENI

A A, VAKILI-GHARTAVOL Z, et al. Toxicity assessment of

superparamagnetic iron oxide nanoparticles in different tissues [J].

Artif Cells Nanomed Biotechnol, 2020, 48(1): 443-451.

[15]SHABAN N Z, KENAWY M Y, TAHA N A, et al.

Cellulose Acetate Nanofibers: Incorporating Hydroxyapatite (HA),

HA/Berberine or HA/Moghat Composites, as Scaffolds to Enhance

In Vitro Osteoporotic Bone Regeneration [J]. Polymers (Basel),

2021, 13(23).

[16]CUI H, WANG B, WANG W, et al. Frosted Slides

Decorated with Silica Nanowires for Detecting Circulating

Tumor Cells from Prostate Cancer Patients [J]. ACS Appl Mater

Interfaces, 2018, 10(23): 19545-19553.

[17]DERAKHSHI M, DAEMI S, SHAHINI P, et al. TwoDimensional Nanomaterials beyond Graphene for Biomedical

Applications [J]. J Funct Biomater, 2022, 13(1).

[18]KU T H, SHEN W T, HSIEH C T, et al. Specific Forms of

Graphene Quantum Dots Induce Apoptosis and Cell Cycle Arrest

in Breast Cancer Cells [J]. Int J Mol Sci, 2023, 24(4).

[19]ZENG Y, ZHANG D, WU M, et al. Lipid-AuNPs@PDA

nanohybrid for MRI/CT imaging and photothermal therapy of

hepatocellular carcinoma [J]. ACS Appl Mater Interfaces, 2014,

6(16): 14266-14277.

[20]M M, V M, F D, et al. Glucose-Functionalized Silver

Nanoparticles as a Potential New Therapy Agent [J]. Int J

Nanomedicine, 2022, 17: 4321-4337.

[21]PANDEY R, YANG F S, SIVASANKARAN V P, et al.

Comparing the Variants of Iron Oxide Nanoparticle-Mediated

Delivery of miRNA34a for Efficiency in Silencing of PD-L1 Genes

in Cancer Cells [J]. Pharmaceutics, 2023, 15(1).

[22]LIU Q, XIANG P, CHEN M, et al. Nano-Sized

Hydroxyapatite Induces Apoptosis and Osteogenic Differentiation

of Vascular Smooth Muscle Cells via JNK/c-JUN Pathway [J]. Int

J Nanomedicine, 2021, 16: 3633-3648.

[23]HALBUS A F, HOROZOV T S, PAUNOV V N. “Ghost”

Silica Nanoparticles of “Host”-Inherited Antibacterial Action [J].

ACS Appl Mater Interfaces, 2019, 11(42): 38519-38530.

[24]CHU J, MARSDEN A J, YOUNG R J, et al. GrapheneBased Materials as Strain Sensors in Glass Fiber/Epoxy Model

Composites [J]. ACS Appl Mater Interfaces, 2019, 11(34): 31338-

31345.

[25]TUFANI A, QURESHI A, NIAZI J H. Iron oxide

nanoparticles based magnetic luminescent quantum dots (MQDs)

synthesis and biomedical/biological applications: A review [J].

Mater Sci Eng C Mater Biol Appl, 2021, 118: 111545.

[26]MIRELES M, MORALES-DALMAU J, JOHANSSON J

D, et al. Non-invasive and quantitative in vivo monitoring of gold

nanoparticle concentration and tissue hemodynamics by hybrid

optical spectroscopies [J]. Nanoscale, 2019, 11(12): 5595-5606.

[27]KYRIAKIDES T R, RAJ A, TSENG T H, et al.

Biocompatibility of nanomaterials and their immunological

properties [J]. Biomed Mater, 2021, 16(4).

[28]KLADKO D V, FALCHEVSKAYA A S, SEROV N S, et

al. Nanomaterial Shape Influence on Cell Behavior [J]. Int J Mol

Sci, 2021, 22(10).

[29]KöNCZöL M, WEISS A, STANGENBERG E, et al. Cellcycle changes and oxidative stress response to magnetite in A549

human lung cells [J]. Chem Res Toxicol, 2013, 26(5): 693-702.

[30]HOU J, LIU H, ZHANG S, et al. Mechanism of toxic

effects of Nano-ZnO on cell cycle of zebrafish (Danio rerio) [J].

Chemosphere, 2019, 229: 206-213.

[31]GUO Z, WANG X, ZHANG P, et al. Silica nanoparticles

cause spermatogenesis dysfunction in mice via inducing cell

cycle arrest and apoptosis [J]. Ecotoxicol Environ Saf, 2022, 231:

113210.

[32]ABDEL HAMID H M, DARWISH Z E, ELSHEIKH S M,

et al. Following cytotoxic nanoconjugates from injection to halting

the cell cycle machinery and its therapeutic implications in oral

cancer [J]. BMC Cancer, 2021, 21(1): 170.

[33]MATSUDA S, NAKAJIMA E, NAKANISHI T, et al.

Effective induction of death in mesothelioma cells with magnetite

nanoparticles under an alternating magnetic field [J]. Mater Sci

Eng C Mater Biol Appl, 2017, 81: 90-96.

[34]XIA T, KOVOCHICH M, LIONG M, et al. Cationic

polystyrene nanosphere toxicity depends on cell-specific

endocytic and mitochondrial injury pathways [J]. ACS Nano, 2008,

2(1): 85-96.

[35]ZHANG R, PIAO M J, KIM K C, et al. Endoplasmic

reticulum stress signaling is involved in silver nanoparticlesinduced apoptosis [J]. Int J Biochem Cell Biol, 2012, 44(1): 224-

232.

[36]TSAI Y Y, HUANG Y H, CHAO Y L, et al. Identification

of the nanogold particle-induced endoplasmic reticulum stress

by omic techniques and systems biology analysis [J]. ACS Nano,

2011, 5(12): 9354-9369.

[37]FENG X, ZHANG Y, ZHANG C, et al. Nanomaterialmediated autophagy: coexisting hazard and health benefits in

biomedicine [J]. Part Fibre Toxicol, 2020, 17(1): 53.

[38]CHEN M, HU Y, HOU Y, et al. Differentiation regulation

of mesenchymal stem cells via autophagy induced by structurallydifferent silica based nanobiomaterials [J]. J Mater Chem B, 2019,

7(16): 2657-2666.

[39]AKTER M, ATIQUE ULLAH A K M, BANIK S, et al.

Green Synthesized Silver Nanoparticles-Mediated Cytotoxic Effect in

Colorectal Cancer Cells: NF-κB Signal Induced Apoptosis Through

Autophagy [J]. Biol Trace Elem Res, 2021, 199(9): 3272-3286.

[40]SONKUSRE P, CAMEOTRA S S. Biogenic selenium

nanoparticles induce ROS-mediated necroptosis in PC-3 cancer cells

through TNF activation [J]. J Nanobiotechnology, 2017, 15(1): 43.

[41]BAUER A T, STROZYK E A, GORZELANNY C, et

al. Cytotoxicity of silica nanoparticles through exocytosis of von

Willebrand factor and necrotic cell death in primary human

endothelial cells [J]. Biomaterials, 2011, 32(33): 8385-8393.

[42]JANISZEWSKA M, PRIMI M C, IZARD T. Cell adhesion

in cancer: Beyond the migration of single cells [J]. J Biol Chem,

2020, 295(8): 2495-2505.

[43]OKAMOTO K, MATSUURA T, HOSOKAWA R, et al.

RGD peptides regulate the specific adhesion scheme of osteoblasts

to hydroxyapatite but not to titanium [J]. J Dent Res, 1998, 77(3):

481-487.

[44]JANG B, SONG H K, HWANG J, et al. Shed syndecan-2

enhances colon cancer progression by increasing cooperative

angiogenesis in the tumor microenvironment [J]. Matrix Biol, 2022,

107: 40-58.

[45]GOPAL S, AROKIASAMY S, PATAKI C, et al. Syndecan

receptors: pericellular regulators in development and inflammatory

disease [J]. Open Biol, 2021, 11(2): 200377.

[46]VAN ANDEL H, KOCEMBA K A, SPAARGAREN M,

et al. Aberrant Wnt signaling in multiple myeloma: molecular

mechanisms and targeting options [J]. Leukemia, 2019, 33(5):

1063-1075.

[47]XQ L, RZ T. Biological responses to nanomaterials:

understanding nano-bio effects on cell [J]. Drug Deliv, 2017,

24(sup1): 1-15.

[48]G G, A T, X L, et al. Nano hydroxyapatite induces glioma

cell apoptosis by suppressing NF-κB signaling [J]. Exp Ther

Med, 2019, 17(5): 4080-4088.

[49]LIU Y, PAN Y, CAO W, et al. A tumor microenvironment

responsive biodegradable CaCO(3)/MnO(2)- based nanoplatform

for the enhanced photodynamic therapy and improved PD-L1

immunotherapy [J]. Theranostics, 2019, 9(23): 6867-6884.

[50]N L, G W, H Y, et al. Size effect of nano-hydroxyapatite

on proliferation of odontoblast-like MDPC-23 [J]. Dent Mater J,

2019, 38(4): 534-539.

[51]E H, O A, M S, et al. Graphene Oxide Negatively

Regulates Cell Cycle in Embryonic Fibroblast Cells [J]. Int J

Nanomedicine, 2020, 15: 6201-6209.

[52]PANTSHWA J M, KONDIAH P P D, CHOONARA Y

E, et al. Nanodrug Delivery Systems for the Treatment of Ovarian

Cancer [J]. Cancers (Basel), 2020, 12(1).

[53]WANG Y, SUN T, JIANG C. Nanodrug delivery systems

for ferroptosis-based cancer therapy [J]. J Control Release, 2022,

344: 289-301.

[54]SPADA A, EMAMI J, TUSZYNSKI J A, et al. The

Uniqueness of Albumin as a Carrier in Nanodrug Delivery [J]. Mol

Pharm, 2021, 18(5): 1862-1894.

[55]WALEKA E, STOJEK Z, KARBARZ M. Activity of

Povidone in Recent Biomedical Applications with Emphasis on

Micro- and Nano Drug Delivery Systems [J]. Pharmaceutics, 2021,

13(5).

[56]LIU S, CHAI J, SUN S, et al. Site-Selective

Photosynthesis of Ag-AgCl@Au Nanomushrooms for NIR-II

Light-Driven O(2)- and O(2)-Evolving Synergistic Photothermal

Therapy against Deep Hypoxic Tumors [J]. ACS Appl Mater

Interfaces, 2021, 13(39): 46451-46463.

[57]FENG Y, XIE X, ZHANG H, et al. Multistage-responsive

nanovehicle to improve tumor penetration for dual-modality

imaging-guided photodynamic-immunotherapy [J]. Biomaterials,

2021, 275: 120990.

[58]CHEN A, WU L, LUO Y, et al. Deep Tumor Penetrating

Gold Nano-Adjuvant for NIR-II-Triggered In Situ Tumor

Vaccination [J]. Small, 2022, 18(20): e2200993.

[59]MARTINELLI C, PUCCI C, CIOFANI G. Nanostructured

carriers as innovative tools for cancer diagnosis and therapy [J].

APL Bioeng, 2019, 3(1): 011502.

[60] 赵 阳 . 几 种 无 机 纳 米 材 料 的 合 成 及 其 在 生 物 医

学 领 域 的 应 用 [D]. 中 国 科 学 技 术 大 学 ,2011.DOI:10.7666/

d.d141417.

[61] 魏 琳 . 金纳米团簇与银纳米纤维的合成及其在

生物医学中的应用 [D]. 湖南大学 ,2012.DOI:CNKI:CDMD:2.1011.264775.

[62] 刘雪姣 . 成核材料与表面化学对纳米颗粒生物活性

的影响 [D]. 山东大学 [2024-09-06].

[63] 陈汉清 , 汪冰 , 柴之芳 ,et al. 食品相关纳米材料对

Caco-2 细胞增殖的影响 [C]// 中国毒理学会第六届全国毒理

学大会论文摘要 .2013.


(11 摘要 Views, 553 PDF Downloads)

Refbacks

  • 当前没有refback。