生物纳米材料对细胞的影响及其在医学领域的应用
摘要
领域。目前,生物纳米材料如何与细胞或者细胞器,组织器官之间进行相互作用以及探究其机制成为了我们亟待解决的问题。
本综述将从细胞宏观的反应(细胞周期,增殖,分化,粘附,凋亡等)做为起点来研究纳米材料对细胞行为的影响,进而
探索纳米材料的分子生物学机制并探讨其在生物医学领域的应用。
关键词
全文:
PDF参考
[1]NAG S, MITRA O, TRIPATHI G, et al. Nanomaterialsassisted photothermal therapy for breast cancer: State-of-the-
art advances and future perspectives [J]. Photodiagnosis Photodyn
Ther, 2024, 45: 103959.
[2]FOULKES R, MAN E, THIND J, et al. The regulation of
nanomaterials and nanomedicines for clinical application: current
and future perspectives [J]. Biomater Sci, 2020, 8(17): 4653-4664.
[3]LI B, SHAO H, GAO L, et al. Nano-drug co-delivery
system of natural active ingredients and chemotherapy drugs for
cancer treatment: a review [J]. Drug Deliv, 2022, 29(1): 2130-
2161.
[4]SHENDE P, PATEL D. Potential of Tribological Properties
of Metal Nanomaterials in Biomedical Applications [J]. Adv Exp
Med Biol, 2020, 1237: 121-134.
[5]RASMUSSEN K, RAUSCHER H, MECH A, et al.
Physico-chemical properties of manufactured nanomaterials -
Characterisation and relevant methods. An outlook based on the
OECD Testing Programme [J]. Regul Toxicol Pharmacol, 2018, 92:
8-28.
[6]LIU X Q, TANG R Z. Biological responses to
nanomaterials: understanding nano-bio effects on cell behaviors
[J]. Drug Deliv, 2017, 24(sup1): 1-15.
[7]XU Y, ZHENG H, SCHUMACHER D, et al. Recent
Advancements of Specific Functionalized Surfaces of Magnetic
Nano- and Microparticles as a Theranostics Source in Biomedicine
[J]. ACS Biomater Sci Eng, 2021, 7(6): 1914-1932.
[8]TAN C, CAO X, WU X J, et al. Recent Advances in
Ultrathin Two-Dimensional Nanomaterials [J]. Chem Rev, 2017,
117(9): 6225-6331.
[9]THEODOROU I G, MüLLER K H, CHEN S, et al. Silver
Nanowire Particle Reactivity with Human Monocyte-Derived
Macrophage Cells: Intracellular Availability of Silver Governs
Their Cytotoxicity [J]. ACS Biomater Sci Eng, 2017, 3(10): 2336-
2347.
[10]YIN I X, ZHANG J, ZHAO I S, et al. The Antibacterial
Mechanism of Silver Nanoparticles and Its Application in
Dentistry [J]. Int J Nanomedicine, 2020, 15: 2555-2562.
[11]N A, AK S, S S, et al. Biosynthesized composites of AuAg nanoparticles using Trapa peel extract induced [J]. Drug Chem
Toxicol, 2019, 42(1): 43-53.
[12]VANGIJZEGEM T, STANICKI D, LAURENT S.
Magnetic iron oxide nanoparticles for drug delivery: applications
and characteristics [J]. Expert Opin Drug Deliv, 2019, 16(1): 69-
78.
[13]GEPPERT M, HIMLY M. Iron Oxide Nanoparticles in
Bioimaging - An Immune Perspective [J]. Front Immunol, 2021,
12: 688927.
[14]VAKILI-GHARTAVOL R, MOMTAZI-BOROJENI
A A, VAKILI-GHARTAVOL Z, et al. Toxicity assessment of
superparamagnetic iron oxide nanoparticles in different tissues [J].
Artif Cells Nanomed Biotechnol, 2020, 48(1): 443-451.
[15]SHABAN N Z, KENAWY M Y, TAHA N A, et al.
Cellulose Acetate Nanofibers: Incorporating Hydroxyapatite (HA),
HA/Berberine or HA/Moghat Composites, as Scaffolds to Enhance
In Vitro Osteoporotic Bone Regeneration [J]. Polymers (Basel),
2021, 13(23).
[16]CUI H, WANG B, WANG W, et al. Frosted Slides
Decorated with Silica Nanowires for Detecting Circulating
Tumor Cells from Prostate Cancer Patients [J]. ACS Appl Mater
Interfaces, 2018, 10(23): 19545-19553.
[17]DERAKHSHI M, DAEMI S, SHAHINI P, et al. TwoDimensional Nanomaterials beyond Graphene for Biomedical
Applications [J]. J Funct Biomater, 2022, 13(1).
[18]KU T H, SHEN W T, HSIEH C T, et al. Specific Forms of
Graphene Quantum Dots Induce Apoptosis and Cell Cycle Arrest
in Breast Cancer Cells [J]. Int J Mol Sci, 2023, 24(4).
[19]ZENG Y, ZHANG D, WU M, et al. Lipid-AuNPs@PDA
nanohybrid for MRI/CT imaging and photothermal therapy of
hepatocellular carcinoma [J]. ACS Appl Mater Interfaces, 2014,
6(16): 14266-14277.
[20]M M, V M, F D, et al. Glucose-Functionalized Silver
Nanoparticles as a Potential New Therapy Agent [J]. Int J
Nanomedicine, 2022, 17: 4321-4337.
[21]PANDEY R, YANG F S, SIVASANKARAN V P, et al.
Comparing the Variants of Iron Oxide Nanoparticle-Mediated
Delivery of miRNA34a for Efficiency in Silencing of PD-L1 Genes
in Cancer Cells [J]. Pharmaceutics, 2023, 15(1).
[22]LIU Q, XIANG P, CHEN M, et al. Nano-Sized
Hydroxyapatite Induces Apoptosis and Osteogenic Differentiation
of Vascular Smooth Muscle Cells via JNK/c-JUN Pathway [J]. Int
J Nanomedicine, 2021, 16: 3633-3648.
[23]HALBUS A F, HOROZOV T S, PAUNOV V N. “Ghost”
Silica Nanoparticles of “Host”-Inherited Antibacterial Action [J].
ACS Appl Mater Interfaces, 2019, 11(42): 38519-38530.
[24]CHU J, MARSDEN A J, YOUNG R J, et al. GrapheneBased Materials as Strain Sensors in Glass Fiber/Epoxy Model
Composites [J]. ACS Appl Mater Interfaces, 2019, 11(34): 31338-
31345.
[25]TUFANI A, QURESHI A, NIAZI J H. Iron oxide
nanoparticles based magnetic luminescent quantum dots (MQDs)
synthesis and biomedical/biological applications: A review [J].
Mater Sci Eng C Mater Biol Appl, 2021, 118: 111545.
[26]MIRELES M, MORALES-DALMAU J, JOHANSSON J
D, et al. Non-invasive and quantitative in vivo monitoring of gold
nanoparticle concentration and tissue hemodynamics by hybrid
optical spectroscopies [J]. Nanoscale, 2019, 11(12): 5595-5606.
[27]KYRIAKIDES T R, RAJ A, TSENG T H, et al.
Biocompatibility of nanomaterials and their immunological
properties [J]. Biomed Mater, 2021, 16(4).
[28]KLADKO D V, FALCHEVSKAYA A S, SEROV N S, et
al. Nanomaterial Shape Influence on Cell Behavior [J]. Int J Mol
Sci, 2021, 22(10).
[29]KöNCZöL M, WEISS A, STANGENBERG E, et al. Cellcycle changes and oxidative stress response to magnetite in A549
human lung cells [J]. Chem Res Toxicol, 2013, 26(5): 693-702.
[30]HOU J, LIU H, ZHANG S, et al. Mechanism of toxic
effects of Nano-ZnO on cell cycle of zebrafish (Danio rerio) [J].
Chemosphere, 2019, 229: 206-213.
[31]GUO Z, WANG X, ZHANG P, et al. Silica nanoparticles
cause spermatogenesis dysfunction in mice via inducing cell
cycle arrest and apoptosis [J]. Ecotoxicol Environ Saf, 2022, 231:
113210.
[32]ABDEL HAMID H M, DARWISH Z E, ELSHEIKH S M,
et al. Following cytotoxic nanoconjugates from injection to halting
the cell cycle machinery and its therapeutic implications in oral
cancer [J]. BMC Cancer, 2021, 21(1): 170.
[33]MATSUDA S, NAKAJIMA E, NAKANISHI T, et al.
Effective induction of death in mesothelioma cells with magnetite
nanoparticles under an alternating magnetic field [J]. Mater Sci
Eng C Mater Biol Appl, 2017, 81: 90-96.
[34]XIA T, KOVOCHICH M, LIONG M, et al. Cationic
polystyrene nanosphere toxicity depends on cell-specific
endocytic and mitochondrial injury pathways [J]. ACS Nano, 2008,
2(1): 85-96.
[35]ZHANG R, PIAO M J, KIM K C, et al. Endoplasmic
reticulum stress signaling is involved in silver nanoparticlesinduced apoptosis [J]. Int J Biochem Cell Biol, 2012, 44(1): 224-
232.
[36]TSAI Y Y, HUANG Y H, CHAO Y L, et al. Identification
of the nanogold particle-induced endoplasmic reticulum stress
by omic techniques and systems biology analysis [J]. ACS Nano,
2011, 5(12): 9354-9369.
[37]FENG X, ZHANG Y, ZHANG C, et al. Nanomaterialmediated autophagy: coexisting hazard and health benefits in
biomedicine [J]. Part Fibre Toxicol, 2020, 17(1): 53.
[38]CHEN M, HU Y, HOU Y, et al. Differentiation regulation
of mesenchymal stem cells via autophagy induced by structurallydifferent silica based nanobiomaterials [J]. J Mater Chem B, 2019,
7(16): 2657-2666.
[39]AKTER M, ATIQUE ULLAH A K M, BANIK S, et al.
Green Synthesized Silver Nanoparticles-Mediated Cytotoxic Effect in
Colorectal Cancer Cells: NF-κB Signal Induced Apoptosis Through
Autophagy [J]. Biol Trace Elem Res, 2021, 199(9): 3272-3286.
[40]SONKUSRE P, CAMEOTRA S S. Biogenic selenium
nanoparticles induce ROS-mediated necroptosis in PC-3 cancer cells
through TNF activation [J]. J Nanobiotechnology, 2017, 15(1): 43.
[41]BAUER A T, STROZYK E A, GORZELANNY C, et
al. Cytotoxicity of silica nanoparticles through exocytosis of von
Willebrand factor and necrotic cell death in primary human
endothelial cells [J]. Biomaterials, 2011, 32(33): 8385-8393.
[42]JANISZEWSKA M, PRIMI M C, IZARD T. Cell adhesion
in cancer: Beyond the migration of single cells [J]. J Biol Chem,
2020, 295(8): 2495-2505.
[43]OKAMOTO K, MATSUURA T, HOSOKAWA R, et al.
RGD peptides regulate the specific adhesion scheme of osteoblasts
to hydroxyapatite but not to titanium [J]. J Dent Res, 1998, 77(3):
481-487.
[44]JANG B, SONG H K, HWANG J, et al. Shed syndecan-2
enhances colon cancer progression by increasing cooperative
angiogenesis in the tumor microenvironment [J]. Matrix Biol, 2022,
107: 40-58.
[45]GOPAL S, AROKIASAMY S, PATAKI C, et al. Syndecan
receptors: pericellular regulators in development and inflammatory
disease [J]. Open Biol, 2021, 11(2): 200377.
[46]VAN ANDEL H, KOCEMBA K A, SPAARGAREN M,
et al. Aberrant Wnt signaling in multiple myeloma: molecular
mechanisms and targeting options [J]. Leukemia, 2019, 33(5):
1063-1075.
[47]XQ L, RZ T. Biological responses to nanomaterials:
understanding nano-bio effects on cell [J]. Drug Deliv, 2017,
24(sup1): 1-15.
[48]G G, A T, X L, et al. Nano hydroxyapatite induces glioma
cell apoptosis by suppressing NF-κB signaling [J]. Exp Ther
Med, 2019, 17(5): 4080-4088.
[49]LIU Y, PAN Y, CAO W, et al. A tumor microenvironment
responsive biodegradable CaCO(3)/MnO(2)- based nanoplatform
for the enhanced photodynamic therapy and improved PD-L1
immunotherapy [J]. Theranostics, 2019, 9(23): 6867-6884.
[50]N L, G W, H Y, et al. Size effect of nano-hydroxyapatite
on proliferation of odontoblast-like MDPC-23 [J]. Dent Mater J,
2019, 38(4): 534-539.
[51]E H, O A, M S, et al. Graphene Oxide Negatively
Regulates Cell Cycle in Embryonic Fibroblast Cells [J]. Int J
Nanomedicine, 2020, 15: 6201-6209.
[52]PANTSHWA J M, KONDIAH P P D, CHOONARA Y
E, et al. Nanodrug Delivery Systems for the Treatment of Ovarian
Cancer [J]. Cancers (Basel), 2020, 12(1).
[53]WANG Y, SUN T, JIANG C. Nanodrug delivery systems
for ferroptosis-based cancer therapy [J]. J Control Release, 2022,
344: 289-301.
[54]SPADA A, EMAMI J, TUSZYNSKI J A, et al. The
Uniqueness of Albumin as a Carrier in Nanodrug Delivery [J]. Mol
Pharm, 2021, 18(5): 1862-1894.
[55]WALEKA E, STOJEK Z, KARBARZ M. Activity of
Povidone in Recent Biomedical Applications with Emphasis on
Micro- and Nano Drug Delivery Systems [J]. Pharmaceutics, 2021,
13(5).
[56]LIU S, CHAI J, SUN S, et al. Site-Selective
Photosynthesis of Ag-AgCl@Au Nanomushrooms for NIR-II
Light-Driven O(2)- and O(2)-Evolving Synergistic Photothermal
Therapy against Deep Hypoxic Tumors [J]. ACS Appl Mater
Interfaces, 2021, 13(39): 46451-46463.
[57]FENG Y, XIE X, ZHANG H, et al. Multistage-responsive
nanovehicle to improve tumor penetration for dual-modality
imaging-guided photodynamic-immunotherapy [J]. Biomaterials,
2021, 275: 120990.
[58]CHEN A, WU L, LUO Y, et al. Deep Tumor Penetrating
Gold Nano-Adjuvant for NIR-II-Triggered In Situ Tumor
Vaccination [J]. Small, 2022, 18(20): e2200993.
[59]MARTINELLI C, PUCCI C, CIOFANI G. Nanostructured
carriers as innovative tools for cancer diagnosis and therapy [J].
APL Bioeng, 2019, 3(1): 011502.
[60] 赵 阳 . 几 种 无 机 纳 米 材 料 的 合 成 及 其 在 生 物 医
学 领 域 的 应 用 [D]. 中 国 科 学 技 术 大 学 ,2011.DOI:10.7666/
d.d141417.
[61] 魏 琳 . 金纳米团簇与银纳米纤维的合成及其在
生物医学中的应用 [D]. 湖南大学 ,2012.DOI:CNKI:CDMD:2.1011.264775.
[62] 刘雪姣 . 成核材料与表面化学对纳米颗粒生物活性
的影响 [D]. 山东大学 [2024-09-06].
[63] 陈汉清 , 汪冰 , 柴之芳 ,et al. 食品相关纳米材料对
Caco-2 细胞增殖的影响 [C]// 中国毒理学会第六届全国毒理
学大会论文摘要 .2013.
(11 摘要 Views, 553 PDF Downloads)
Refbacks
- 当前没有refback。