开放期刊系统

基于 PDMS 的 2D、3D 体外细胞培养方法进展

杜 婉钰, 刘 佳琳, 沙 笑羽, 李 旖蕊, 郎明 非*

摘要

近年来,体外细胞培养技术取得了长足的进展,二维(2D)和三维(3D)细胞培养方案层出不穷。其中,基于聚
二甲基硅氧烷(PDMS)的培养方案以其广泛的应用而备受瞩目。PDMS,这种由硅氧分子的重复单元和两个有机甲基附着
在硅上构成的合成聚合物,以其卓越的生物兼容性和易于加工的特性,在基于微流控技术的 2D 细胞培养领域获得了大量
应用。而随着器官芯片技术的持续进步,PDMS 在器官芯片构建中同样展现出卓越的性能,其在 3D 细胞培养领域也发挥
着举足轻重的作用。本文旨在全面概述基于 PDMS 的 2D 和 3D 体外细胞培养方法,并深入探讨 3D 细胞培养在器官芯片中
的具体应用。

关键词

PDMS;二维细胞培养;三维细胞培养;器官芯片

全文:

PDF

参考

[1]M, T. & S, T. - Viable cell culture in PDMS-based micro-

fluidic devices[J]. Methods Cell Biol ,2018148:3-33.

[2]O, O. et al. - Real-time deformability cytometry: on-thefly cell mechanical phenotyping[J]. Nat Methods,2015 12:199-

202.

[3]M, D. et al. - Surface Modification of PDMS-Based

Microfluidic Devices with Collagen Using[J]. Micromachines

,2021,12.

[4] 王建政 , 朱玉霞 . 细胞培养中的三维支架 [J]. 生物骨

科材料与临床研究 ,2016,13: 60-64+72 .

[5]LP, F., VM, G. & JF, M. - Design of spherically structured 3D in vitro tumor models -Advances and[J].Acta Biomater

,2018,75:11-34.

[6]EC, C. et al. - 3D tumor spheroids: an overview on the

tools and techniques used for their[J].Biotechnol Adv ,2016,34:

1427-1441

[7]LD, A., A, H., G, K., MJ, M. & SJ, B. - Enzymatically degradable poly(ethylene glycol) hydrogels for the 3D culture and[J].

Acta Biomater ,2015,22:103-110.

[8]I, M.-S. et al. - Surface characteristics determining the

cell compatibility of ionically[J]. Biomed Mater,2014, 9:1748-

6041

[9]T, N. & E, T. - The effect of cerium valence states at cerium oxide nanoparticle surfaces on cell[J]. Biomaterials,2014,

35:4441-4453.

[10]AM, R., Z, J., M, B. & J, L. - Physical aspects of cell

culture substrates: topography, roughness, and[J]. Small,2012,

8:336-355 .

[11]Huttlin, E.L. et al. Dual proteome-scale networks reveal

cell-specific remodeling of the human interactome[J]. Biomaterials,2019.

[12]LA, S., LH, C., KL, W., KH, L. & AM, K. - Isolation and

Identification of Proteins Secreted by Cells Cultured within[J].

ACS Biomater Sci Eng,2018,4: 836-845.

[13]R, M., PI, L. & E, C. - Biomechanical and biochemical

remodeling of stromal extracellular matrix in. Trends Biotechnol

,2015,33: 230-236 .

[14]A, S., T, M., RW, S. & S, N. - Improved cell adhesion

under shear stress in PDMS microfluidic devices[J]. Colloids Surf

B Biointerfaces ,2017150:456-464.

[15]M, L. et al. - Adsorption force of fibronectin on various surface chemistries and its vital role[J]. Biomacromolecules

,2018,16:973-984.

[16]CG, C. et al. - Fibronectin coating of oxygenator membranes enhances endothelial cell attachment. Biomed Eng Online,2013, 12: 12-17.

[17]P, S., PY, C., C, B., CF, C. & E, G. - Microfluidic devices for the study of actin cytoskeleton in constricted. Methods,2016,

94:65-74.

[18]MH, M., A, H., M, A., M, R. & M, S. - Expansion of cord

blood stem cells in fibronectin-coated microfluidic bioreactor[J].

Hematol Transfus Cell Ther ,2021,10 (20).

[19]W, S. et al. - Bi-layer blood vessel mimicking microfluidic platform for antitumor drug[J].Biomicrofluidics,2019, 13 (9).

[20]Mohseni, M. et al. Differential Attachment of Pulmonary

Cells on PDMS Substrate with Varied Features[J]. Hematol Transfus Cell Ther ,2020.

[21]Hashemzadeh, H.A.-O. et al. PDMS Nano-Modified

Scaffolds for Improvement of Stem Cells Proliferation and Differentiation in Microfluidic Platform[J]. LID,2016.

[22]Stanton, M.M. et al. Cell behavior on surface modified

polydimethylsiloxane (PDMS)[J]. Hematol Transfus Cell Ther

,2019.

[23]CM, M., C, B. & RM, O. - Advances in Engineering Human Tissue Models[J].Front Bioeng Biotechnol,2021, 8 (21).

[24]D, A., H, B., E, J. & G, N. - Three-dimensional cell culture: a breakthrough in vivo[J]. Int J Mol Sci ,2015,16:5517-5527.

[25]J, X. et al. - Construction of the recellularized corneal stroma using porous acellular corneal[J].Biomaterials

,2021,32:6962-6971.

[26]SW, C., YC, Y., Y, Z., HW, S. & Y, X. - Uniform

beads with controllable pore sizes for biomedical applications[J].

Small,2010, 6:1492-1498.

[27]B, Z. et al. - Functionalized PDMS with Versatile and

Scalable Surface Roughness Gradients for[J].ACS Appl Mater Interfaces ,2015,7:17181-1718.

[28]Moghadas, H., Saidi, M.S., Kashaninejad, N.,

Kiyoumarsioskouei, A. & Nguyen, N.T. Fabrication and

characterization of low-cost, bead-free, durable and hydrophobic

electrospun membrane for 3D cell culture[J]. Biomedical

microdevices ,2017,19:74

[29] 陈津 . 骨髓间充质细胞联合 PDMS 支架构建移植

胰岛微环境的实验研究 [J]. 中华细胞与干细胞杂志 ( 电子

版 ),2018,8:328-333.

[30] 何懿 . 骨髓间充质细胞联合 PDMS 支架构建移植胰

岛微环境的实验研究 [D]. 北京 : 北京协和医学院 , 2011.

[31] 钮慧 . 骨髓间充质细胞联合 PDMS 支架构建移植胰

岛微环境的实验研究 [D]. 苏州 : 苏州大学 , 2018.

[32]Li, X.J., Valadez Av Fau - Zuo, P., Zuo P Fau - Nie, Z.

& Nie, Z. Microfluidic 3D cell culture: potential application for

tissue-based bioassays[J]. Biomedical microdevices ,2017.

[33]Ren, K., Zhou J Fau - Wu, H. & Wu, H. Materials for

microfluidic chip fabrication[J].ACS Appl Mater Interfaces ,2015.

[34]Ertl, P., Sticker, D., Charwat, V., Kasper, C. &

Lepperdinger, G. Lab-on-a-chip technologies for stem cell

analysis.

[35]Mahadik, B.P., Wheeler Td Fau - Skertich, L.J., Skertich

Lj Fau - Kenis, P.J.A., Kenis Pj Fau - Harley, B.A.C. & Harley,

B.A. Microfluidic generation of gradient hydrogels to modulate

hematopoietic stem cell culture environment[J].ACS Appl Mater

Interfaces ,2015.

[36]Choi, N.W. et al. Microfluidic scaffolds for tissue

engineering[J]. Human reproduction (Oxford, England),2019.

[37]Mei, X. et al. Microfluidic platform for studying osteocyte

mechanoregulation of breast cancer bone metastasis[J].ACS Appl

Mater Interfaces ,2015.

[38]Rosser, J. et al. Microfluidic nutrient gradient-based

three-dimensional chondrocyte culture-on-a-chip as an in

vitro equine arthritis model[J]. Human reproduction (Oxford,

England),2019.

[39]Schepers, A., Li, C., Chhabra, A., Seney, B.T. & Bhatia,

S. Engineering a perfusable 3D human liver platform from iPS

cells[J].ACS Appl Mater Interfaces ,2015.

[40] 田曦亮 . 细胞培养中的三维支架 [J]. 生物骨科材料

与临床研究 ,2013.

[41]Ahn, J. et al. Three-dimensional microengineered

vascularised endometrium-on-a-chip[J]. Human reproduction

(Oxford, England) ,2021,36: 2720-2731.

[42]Shirure, V.S. & George, S.C. Design considerations to

minimize the impact of drug absorption in polymer-based organon-a-chip platforms[J].Lab on a chip,2017, 17: 681-690 .

[43]Rosenbluth, J.M. et al. Organoid cultures from normal

and cancer-prone human breast tissues preserve complex

epithelial lineages[J].Nature communications,2020, 11:1711.

[44]Rothbauer, M. et al. Monitoring tissue-level remodelling

during inflammatory arthritis using a three-dimensional

synovium-on-a-chip with non-invasive light scattering

biosensing[J]. Lab on a chip ,2020,20:1461-1471 .

[45]Barkauskas, C.E. et al. Lung organoids: current uses

and future promise[J]. Development (Cambridge, England)

,2017,144:986-997.

[46]Kim, J. et al. Three-Dimensional Human Liver-Chip

Emulating Premetastatic Niche Formation by Breast CancerDerived Extracellular Vesicles[J]. ACS nano ,2020,14:14971-

14988 .

[47]Tian, H. et al. A Novel Tissue-Based Liver-Kidneyon-a-Chip Can Mimic Liver Tropism of Extracellular Vesicles

Derived from Breast Cancer Cells[J]. Biotechnology journal,2020,

15,:1900107 .

[48]Kim, H.J., Huh, D., Hamilton, G. & Ingber, D.E. Human

gut-on-a-chip inhabited by microbial flora that experiences

intestinal peristalsis-like motions and flow[J]. Lab on a

chip,2012,12:2165-2174.


(12 摘要 Views, 376 PDF Downloads)

Refbacks

  • 当前没有refback。