开放期刊系统

CD177 在疾病中的研究进展

王 世博, 周 昱汝, 刘 雨璇, 齐广 莹*

摘要

CD177 属于白细胞抗原(Leukocyte Antigen 6, Ly-6)超基因家族,是一种在多种组织中表达的跨膜蛋白,具有
多种生物学功能。近年来研究发现 CD177 在多种肿瘤如结直肠癌、乳腺癌、胃癌和宫颈癌等癌症疾病发生发展的过程中表
达并起着关键性的作用,可能是一个潜在的治疗靶点。CD177 同时作为一种免疫相关分子,参与免疫细胞的活化、募集和
功能等多个方面,在肿瘤免疫中可以通过调控 CD177 的表达水平或活性,影响免疫细胞的活化和功能,从而达到抑制肿瘤
生长和扩散的目的。近年来研究还发现 CD177 与急性胰腺炎、胃炎等一些疾病有关。本文就 CD177 在临床疾病中作用的
目前最新研究进展进行综述。

关键词

CD177;疾病;综述

全文:

PDF

参考

[1] MCKENZIE I F, GARDINER J, CHERRY M, et al.

Lymphocyte antigens: Ly-4, Ly-6, and Ly-7 [J]. Transplant Proc,

1977, 9(1): 667-9.

[2] DAVIES A, SIMMONS D L, HALE G, et al. CD59, an

LY-6-like protein expressed in human lymphoid cells, regulates

the action of the complement membrane attack complex on

homologous cells [J]. J Exp Med, 1989, 170(3): 637-54.

[3] LECLAIR K P, RABIN M, NESBITT M N, et al. Murine

Ly-6 multigene family is located on chromosome 15 [J]. Proc Natl

Acad Sci U S A, 1987, 84(6): 1638-42.

[4] HAVRAN W L, LANCKI D W, MOLDWIN R L, et

al. Characterization of an anti-Ly-6 monoclonal antibody which

defines and activates cytolytic T lymphocytes [J]. J Immunol,

1988, 140(4): 1034-42.

[5] KISSEL K, SANTOSO S, HOFMANN C, et al. Molecular

basis of the neutrophil glycoprotein NB1 (CD177) involved in the

pathogenesis of immune neutropenias and transfusion reactions [J].

Eur J Immunol, 2001, 31(5): 1301-9.

[6] TEMERINAC S, KLIPPEL S, STRUNCK E, et al.

Cloning of PRV-1, a novel member of the uPAR receptor

superfamily, which is overexpressed in polycythemia rubra vera [J].

Blood, 2000, 95(8): 2569-76.

[7] 刘瑶 . CD177 过表达对结肠癌的作用及其机制研究

[D], 2022.

[8] PATEL S G, KARLITZ J J, YEN T, et al. The rising

tide of early-onset colorectal cancer: a comprehensive review of

epidemiology, clinical features, biology, risk factors, prevention,

and early detection [J]. Lancet Gastroenterol Hepatol, 2022, 7(3):

262-74.

[9] HARBECK N, GNANT M. Breast cancer [J]. Lancet,

2017, 389(10074): 1134-50.

[10] TERZIĆ J, GRIVENNIKOV S, KARIN E, et al.

Inflammation and colon cancer [J]. Gastroenterology, 2010, 138(6):

2101-14.e5.

[11] WANG C, HU R, DUAN L, et al. The canonical Wnt/

β-catenin signaling pathway facilitates pseudorabies virus

proliferation and enhances virus-induced autophagy [J]. Vet

Microbiol, 2022, 272: 109502.

[12] KRAUS S, ARBER N. Inflammation and colorectal

cancer [J]. Curr Opin Pharmacol, 2009, 9(4): 405-10.

[13] ZHOU G, PENG K, SONG Y, et al. CD177+ neutrophils

suppress epithelial cell tumourigenesis in colitis-associated

cancer and predict good prognosis in colorectal cancer [J].

Carcinogenesis, 2018, 39(2): 272-82.

[14] COFFELT S B, WELLENSTEIN M D, DE VISSER K E.

Neutrophils in cancer: neutral no more [J]. Nat Rev Cancer, 2016,

16(7): 431-46.

[15] ERUSLANOV E B, BHOJNAGARWALA P S,

QUATROMONI J G, et al. Tumor-associated neutrophils stimulate

T cell responses in early-stage human lung cancer [J]. J Clin

Invest, 2014, 124(12): 5466-80.

[16] FINISGUERRA V, DI CONZA G, DI MATTEO M, et al.

MET is required for the recruitment of anti-tumoural neutrophils

[J]. Nature, 2015, 522(7556): 349-53.

[17] SHANGKUAN W C, LIN H C, CHANG Y T, et al. Risk

analysis of colorectal cancer incidence by gene expression analysis

[J]. PeerJ, 2017, 5: e3003.

[18] KOS K, ASLAM M A, VAN DE VEN R, et al. Tumoreducated T(regs) drive organ-specific metastasis in breast cancer

by impairing NK cells in the lymph node niche [J]. Cell Rep, 2022,

38(9): 110447.

[19] XU X, ZHANG M, XU F, et al. Wnt signaling in breast

cancer: biological mechanisms, challenges and opportunities [J].

Mol Cancer, 2020, 19(1): 165.

[20] CHENG J, LI M, BAI R. The Wnt signaling cascade in

the pathogenesis of osteoarthritis and related promising treatment

strategies [J]. Front Physiol, 2022, 13: 954454.

[21] HART M J, DE LOS SANTOS R, ALBERT I N, et al.

Downregulation of beta-catenin by human Axin and its association

with the APC tumor suppressor, beta-catenin and GSK3 beta [J].

Curr Biol, 1998, 8(10): 573-81.

[22] PEIFER M, PAI L M, CASEY M. Phosphorylation of the

Drosophila adherens junction protein Armadillo: roles for wingless

signal and zeste-white 3 kinase [J]. Dev Biol, 1994, 166(2): 543-

56.

[23] LIU C, LI Y, SEMENOV M, et al. Control of betacatenin phosphorylation/degradation by a dual-kinase mechanism

[J]. Cell, 2002, 108(6): 837-47.

[24] AMIT S, HATZUBAI A, BIRMAN Y, et al. Axinmediated CKI phosphorylation of beta-catenin at Ser 45: a

molecular switch for the Wnt pathway [J]. Genes Dev, 2002, 16(9):

1066-76.

[25] KLUZ P N, KOLB R, XIE Q, et al. Cancer cellintrinsic function of CD177 in attenuating β-catenin signaling [J].

Oncogene, 2020, 39(14): 2877-89.

[26] MOORE D H. Cervical cancer [J]. Obstet Gynecol,

2006, 107(5): 1152-61.

[27] SALEH M, VIRARKAR M, JAVADI S, et al. Cervical

Cancer: 2018 Revised International Federation of Gynecology and

Obstetrics Staging System and the Role of Imaging [J]. AJR Am J

Roentgenol, 2020, 214(5): 1182-95.

[28] HAN X, CHANG W W, XIA X. Immune checkpoint

inhibitors in advanced and recurrent/metastatic cervical cancer [J].

Front Oncol, 2022, 12: 996495.

[29] O'MALLEY D M, NEFFA M, MONK B J, et al. Dual

PD-1 and CTLA-4 Checkpoint Blockade Using Balstilimab and

Zalifrelimab Combination as Second-Line Treatment for Advanced

Cervical Cancer: An Open-Label Phase II Study [J]. J Clin Oncol,

2022, 40(7): 762-71.

[30] LI W, WU F, ZHAO S, et al. Correlation between

PD-1/PD-L1 expression and polarization in tumor-associated

macrophages: A key player in tumor immunotherapy [J]. Cytokine

Growth Factor Rev, 2022, 67: 49-57.

[31] LIAO W, LI W, LI Y, et al. Diagnostic, prognostic, and

immunological roles of CD177 in cervical cancer [J]. J Cancer Res

Clin Oncol, 2023, 149(1): 173-89.

[32] KONO S, HIROHATA T. Nutrition and stomach cancer

[J]. Cancer Causes Control, 1996, 7(1): 41-55.

[33] JOOSSENS J V, HILL M J, ELLIOTT P, et al. Dietary

salt, nitrate and stomach cancer mortality in 24 countries.

European Cancer Prevention (ECP) and the INTERSALT

Cooperative Research Group [J]. Int J Epidemiol, 1996, 25(3):

494-504.

[34] NOZAKI K, SHIMIZU N, INADA K, et al. Synergistic

promoting effects of Helicobacter pylori infection and highsalt diet on gastric carcinogenesis in Mongolian gerbils [J]. Jpn J

Cancer Res, 2002, 93(10): 1083-9.

[35] TOYODA T, TSUKAMOTO T, YAMAMOTO M, et al.

Gene expression analysis of a Helicobacter pylori-infected and

high-salt diet-treated mouse gastric tumor model: identification of

CD177 as a novel prognostic factor in patients with gastric cancer

[J]. BMC Gastroenterol, 2013, 13: 122.

[36] DENG Y Y, SHAMOON M, HE Y, et al. Cathelicidinrelated antimicrobial peptide modulates the severity of acute

pancreatitis in mice [J]. Mol Med Rep, 2016, 13(5): 3881-5.

[37] SCHEPERS N J, BAKKER O J, BESSELINK M G, et al.

Impact of characteristics of organ failure and infected necrosis on

mortality in necrotising pancreatitis [J]. Gut, 2019, 68(6): 1044-

51.

[38] PETROV M S, YADAV D. Global epidemiology and

holistic prevention of pancreatitis [J]. Nat Rev Gastroenterol

Hepatol, 2019, 16(3): 175-84.

[39] ZHANG J, YANG X, XU X, et al. CD177 Inhibits

Neutrophil Extracellular Trap Formation and Protects against

Acute Pancreatitis in Mice [J]. J Clin Med, 2023, 12(7).

[40] YANG X T, WANG Z J. CD177 Expression and

Inflammation Grade in Helicobacter pylori-Infected Wild-Type

and CD177(-/-) C57BL/6 Mice [J]. Anal Cell Pathol (Amst), 2019,

2019: 9506863.


(17 摘要 Views, 272 PDF Downloads)

Refbacks

  • 当前没有refback。