开放期刊系统

骨软组织工程复合支架的研究现状与未来方向

小洲 蔺, 倩倩 吴, 春亮 李

摘要

骨软组织工程复合支架在骨关节疾病治疗中展现出巨大的潜力,成为近年来研究的热点。本文全面综述了骨软组织工程复合支架的设计原则、制备方法、生物功能和力学性能等方面的最新进展。设计原则探讨了材料选择、结构设计和生物相容性对支架性能的影响;制备方法详细介绍了传统制造技术、3D打印技术和纳米技术的应用。生物功能方面,分析了支架在促进细胞附着、增殖和分化方面的研究,以及支架在体内的降解行为和生物相容性。力学性能方面,讨论了支架在承载机械应力、维持结构稳定性和促进组织修复中的作用。最后,本文展望了未来研究方向,包括多功能支架的开发、个性化医疗和智能支架的发展,这些研究将为骨软组织工程复合支架在临床应用中的广泛推广提供新的思路和技术支持。


关键词

骨软组织工程、复合支架、生物功能、力学性能、3D打印、纳米技术、临床应用


参考

Jang S, Lee K, Ju J H. Recent Updates of Diagnosis, Pathophysiology and Treatment on Osteoarthritis of the Knee[J]. International Journal of Molecular Sciences, 2021, 22(5): 2619.

Shrivats A R, McDermott M C, Hollinger J O. Bone tissue engineering: state of the union[J]. Drug Discovery Today, 2014, 19(6): 781-786.

Ye H, Zhu C, Bao C, et al. Recent advances on responsive scaffolds for bone tissue engineering[J]. Frontiers in Bioengineering and Biotechnology, 2022, 10: 794049.

Bose S, Robertson S F, Bandyopadhyay A. Recent advances in bone tissue engineering scaffolds[J]. Trends in Biotechnology, 2018, 36(6): 522-535.

Ye H, Zhu C, Bao C, et al. Recent advances on responsive scaffolds for bone tissue engineering[J]. Frontiers in Bioengineering and Biotechnology, 2022, 10: 794049.

Xue R, Qian Y, Li L, et al. Recent progress in the development of biomaterials for long-bone segmental defect repair[J]. Frontiers in Materials, 2020, 7: 342.

Ma C, Gerhard E, Lu D, et al. Biomimetic scaffolds for regeneration of musculoskeletal tissue interfaces[J]. Regenerative Biomaterials, 2021, 8(4): rbab029.

Staiger M. P., Pietak A. M., Huadmai J., et al. Magnesium and its alloys as orthopedic biomaterials: A review[J]. Biomaterials, 2018, 27(9): 1728-1734.

Chen Y, Xu Z, Smith C, et al. Recent advances on the development of magnesium alloys for biodegradable implants[J]. Acta Biomaterialia, 2020, 103: 1-23.

Lin K, Wu C, Chang J. Advances in synthesis of calcium phosphate crystals with controlled size and shape[J]. Acta Biomaterialia, 2019, 10(2): 407-425.

Song R, Murphy M, Li C, et al. Recent Development of Biodegradable PLA and PGA Polymer Blends in Tissue Engineering and Regenerative Medicine[J]. International Journal of Polymer Science, 2019, 2019: 1-20.

Ghorbani F, Khoshroo K, Ghazvinian A H. Advanced nanobiomaterials for bone tissue engineering: A review[J]. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12(6): 1253-1275.

Song J, et al. Recent advances in porous scaffolds for bone regeneration: Materials, fabrication techniques, and clinical applications[J]. Materials Science and Engineering: C, 2021, 123: 112003.

Liu X, et al. Biomimetic porous scaffolds for bone tissue engineering[J]. Materials Today, 2020, 41: 136-154.

Zhang K, et al. Layer-by-layer assembled 3D scaffolds for bone tissue engineering[J]. Advanced Functional Materials, 2021, 31(2): 2006694.

Ma C, et al. 3D printing of personalized thick and perfusable cardiac patches for treating myocardial infarction[J]. Advanced Functional Materials, 2021, 31(39): 2105080.

Xie J, et al. Electrospun nanofibers for sensory nervous system repair and regeneration[J]. Advanced Drug Delivery Reviews, 2020, 160: 1-26.

Li W. J, et al. Fabrication and application of biomimetic scaffolds in regenerative medicine[J]. Materials Today, 2021, 45: 67-80.

Xie J, Li W J, et al. Electrospun nanofibers for sensory nervous system repair and regeneration[J]. Advanced Drug Delivery Reviews, 2020, 160: 1-26.

Yang J, Zhang Y S, Yue K, et al. 3D printing of polymeric scaffolds for regenerative medicine[J]. Advanced Healthcare Materials, 2019, 8(7): 1800448.

Ghorbani F, Khoshroo K, Ghazvinian A H. Advanced nanobiomaterials for bone tissue engineering: A review[J]. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12(6): 1253-1275.

Murphy C. M, Haugh M. G, O'Brien F. J. The effect of mean pore size on cell attachment, proliferation, and migration in collagen–glycosaminoglycan scaffolds for tissue engineering[J]. Biomaterials, 2010, 31(3): 461-466.

Ngo T. D, Kashani A, Imbalzano G, et al. Additive manufacturing (3D printing): A review of materials, methods, applications, and challenges[J]. Composites Part B: Engineering, 2018, 143: 172-196.

Li X, Wang C, Zhang W, et al. Fabrication of hydroxyapatite/chitosan composite three-dimensional scaffold with uniform macro/micro-porous structure for bone tissue engineering[J]. Applied Surface Science, 2020, 529: 147103.

Chen Y. W, Shen Y. F. A review of three-dimensional printing in tissue engineering[J]. Biotechnology and Bioengineering, 2019, 116(5): 1136-1153.

Zhang K, Wang Z, Lan X, et al. 3D-printed bioceramic scaffolds: From bone tissue engineering to tumor therapy[J]. Acta Biomaterialia, 2021, 126: 463-475.

Wang W, Itoh S, Tanaka Y, et al. The mechanical property and cell viability of bone and cartilage scaffolds: A review[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8: 272.

Chen Y W, Shen Y F. A review of three-dimensional printing in tissue engineering[J]. Biotechnology and Bioengineering, 2021, 116(5): 1136-1153.

Zhao D, Huang Y, Ao Y, et al. Recent advances on 3D printing for the repair of osteochondral defects[J]. Biomaterials, 2020, 256: 120204.

Li X, Wang C, Zhang W, et al. Fabrication of hydroxyapatite/chitosan composite three-dimensional scaffold with uniform macro/micro-porous structure for bone tissue engineering[J]. Applied Surface Science, 2020, 529: 147103.

Wang W, Deng L, Xu J, et al. Preclinical studies of bone tissue engineering scaffolds: A review of animal models and outcomes[J]. Bioactive Materials, 2020, 5(3): 560-570.

Smith J O, Sengers B G, Aarvold A, et al. Clinical translation of tissue engineered products for orthopaedic applications: Challenges and opportunities[J]. Biomaterials, 2019, 192: 129-146.

Li J, Chen G, Xu X, et al. Surface modification of biomaterials to control chronic inflammatory responses in bone regeneration[J]. Biomaterials Science, 2020, 8(4): 1230-1241.

Zhang X, Liu X, Wang S, et al. Controlled degradation of polymer scaffolds for bone tissue engineering applications[J]. Journal of Materials Science & Technology, 2021, 61: 32-44.

Jones J R, Hench L L. Regenerative medicine: Expanding the options for tissue engineering scaffolds[J]. Biomaterials, 2019, 217: 119231.

Li H, Zhao X, Ma Y, et al. Controlled release of antibiotics from poly(lactic-co-glycolic acid) nanofibers for preventing bacterial infection in bone tissue engineering[J]. Materials Science and Engineering: C, 2021, 120: 111717.

Chen Y, Zhang Z, Zhang J, et al. Personalized 3D printed bioactive bone scaffolds for treating bone defects with different shapes[J]. Materials & Design, 2020, 195: 109028.

Wang H, Zhang H, Wang Z, et al. An intelligent scaffold with ROS and pH dual responsiveness for the synergistic treatment of bacterial infection and enhanced osteogenesis[J]. Chemical Engineering Journal, 2019, 375: 121917.

Refbacks

  • 当前没有refback。