开放期刊系统

稻壳灰混凝土空心砌块热传递模型研究

O. M.

摘要

混凝土空心砌块被世界上许多国家广泛使用。近年来,水泥含量部分被掺合物,尤其是农业废弃物取代。有必要对这些改进块的热传递特性进行建模,测试其热性能。这项研究重点是在有限体积计算机的帮助下进行建模代码。具体来说,对于用水泥生产的两腔砌块用稻壳灰替代。结果表明,随着稻壳灰替代率的增加,整个砌块宽度上的热梯度增加,而热流率降低。本文第二部分研究了通过空气间隙的热传递效果,并与将其视为真空的类似研究进行了比较。由于建筑砖的空气间隙热流通过并影响了砖内的热流模式,从而不能被视为真空。这项研究的结果将有助于建筑专业人员在选择建筑砌块和正确估计建筑物的空调负荷。

关键词

传热;空心砌块;稻壳灰

全文:

PDF

参考

[1] Adesanya, DA. and Raheem, AA. 2009. Development of corncob ash blended cement. Construction and Building Materials, 23:347-352. [2] Al-Tamimi, S., Al-Osta, A., Baghabra, S. and Ben- Mansour, R. 2017. Effect of geometry of holes on heat transfer of concrete masonry bricks using numerical analysis. Arabian Journal for Science and Engineering, 42(9): 3733-3749. [3] Al-Hazmy, MM. 2006. Analysis of coupled natural convection conduction effects on the heat transport through hollow building blocks. Energy and Buildings, 38 (5): 515-521. [4] ASHRAE, 2017. ASHRAE Handbook Fundamentals. ASHRAE Incorporated. http://www.ashrae.org. [5] Balaji, NC., Mani, M. and Venkatarama, BV. 2014. Discerning heat transfer in building materials. Energy Procedia, 54: 654-668. [6] Chandrasekhar, S., Satyanarayana, KG., Pramada, PN. and Raghavan P. 2003. Processing, properties and application of reactive silica from rice husk-an overview. Journal of Materials Science, 38(15): 3159-3168. [7] Cianfrini, M., Vollaro R. and Habib E. 2017. Dynamic thermal features of insulated blocks: actual behaviour and myths. Energies, 10(11): 1807. [8] Cisse, IK. and Laguerbe, M. 2000, Mechanical characterization of filler sandcrete with rice husk ash additions; study applied to Senegal. Cement and Concrete Research, 30(1):13–18. [9] Costa, VAF. 2014. Improving the thermal performance of red clay holed bricks. Energy and Buildings, 70: 352-364 [10] Ganesan, K., Rajagopal, K. and Thangavel, K. 2008, Rice husak ash blended cement: Assessment of optimal level of replacement for strength and permeability properties of concrete. Construction and Building Materials, 22(8): 1675-1683. [11] Gijon-Rivera, M., Serrano-Arellano, J., Xaman, J. and Alvarez, G. 2016. Effect of different building materials on conjugate heat and mass transfer. Ingeniería Mecánica, Tecnología y Desarrollo, 5(4): 395-404. [12] Idan, S. and Feldman Y. 2017. Passive thermal insulation of confined natural convection heat transfer: an application to hollow construction blocks. Applied Thermal Engineering, 124: 1328-1342. [13] Kamiyo, OM. and Oyekan, GL. 2011. Thermal, hygrothermal and structural properties of sandcrete blocks produced with coconut husk ash blended cement. Journal of Engineering Research, 16(3): 80-89. [14] Lacarrière, B., Lartigue, B. and Monchoux, F. 2003. Numerical study of heat transfer in a wall of vertically perforated bricks: influence of assembly method. Energy and Buildings, 35(3): 229-237. [15] Li, LP., Wu, ZG., Li, ZY., He, YL., and Tao, WQ. 2008. Numerical thermal optimization of the configuration of multi- holed clay bricks used for constructing building walls by the finite volume method. International Journal of Heat Mass Transfer, 51: 3669-3682. [16] Nair, DG., Jagadish, KS. and Fraaiji, A. 2006. Reactive pozzolanas from rice husk ash: an alternative to cement for rural housing. Cement and Concrete Research, 36(6): 1062-1071. [17] Okunade, EA. 2008. The effect of wood ash and sawdust admixture on the engineering properties of a burnt laterite-clay brick. Journal of Applied Science, 8(6): 1042-1048. [18] Oluleke, O., Jacob, J. and Henry, N. 2012. Finite element modeling of low heat conducting building bricks. Journal of Minerals and Materials Characterization and Engineering, 11: 800-806. [19] Oyekan, GL. and Kamiyo, OM. 2011. A study on the engineering properties of sandcrete blocks produced with rice husk ash blended cement. Journal of Engineering and Technology Research, 3:88-98. [20] Rodriguez de Sensale, G., Ribeiro, AB. and Goncalves A. 2008. Effects of RHA on autogenous shrinkage of portland cement pastes. Cement and Concrete Composite, 30(10): 892-897. [21] Shibib, KS., Qatta, HI. and Hamza MS. 2013. Enhancement in thermal and mechanical properties of bricks. Journal of Thermal Science, 17(4 ): 1119-1123. [22] Tang, DL., Li, LP., Song, CF., Tao, WQ. and He, YL. 2015. Numerical thermal analysis of applying insulation material to holes in hollow brick walls by the finite volume method. Numerical Heat Transfer: Part A, 68 (5): 526-547. [23] Turgut, P. and Yesilata, B. 2008. Physio-mechanical and thermal performances of newly developed rubber-added bricks. Energy and Buildings, 40(5): 679-688


(60 摘要 Views, 127 PDF Downloads)

Refbacks

  • 当前没有refback。