利用机器学习确定航空发动机预测维修方法
摘要
关键词
参考
[1] Behera, S., Patel, Y. S., Choubey, A., Misra, R., Kanani, C. S., & Sillitti, A. (2019). Ensemble trees learning-based improved predictive maintenance using IIoT for turbofan engines. Proceedings of the ACM Symposium on Applied Computing, Part F147772, 842–850. https://doi.org/10.1145/3297280.3297363 [2] Mathew, V., Toby, T., Singh, V., Rao, B. M., & Kumar, M. G. (2020). 2020 IEEE 2nd International Conference on Circuits and Systems, ICCS 2020. 2020 IEEE 2nd International Conference on Circuits and Systems, ICCS 2020, Iccs, 306–311. [3] Si, X. S., Wang, W., Hu, C. H., & Zhou, D. H. (2011). Remaining useful life estimation - A review on the statistical data-driven approaches. European Journal of Operational Research, 213(1), 1–14. https://doi.org/10.1016/j.ejor.2010.11.018 [4] Saxena, A., & Goebel, K. (2008). Turbofan engine degradation simulation data set. NASA Ames Prognostics Data Repository, 878-887. [5] Susto, G. A., Beghi, A., & De Luca, C. (2012). A predictive maintenance system for epitaxy processes based on filtering and prediction techniques. IEEE Transactions on Semiconductor Manufacturing, 25(4), 638–649. https://doi.org/10.1109/TSM.2012.2209131 [6] Wuest, T., Weimer, D., Irgens, C., & Thoben, K. D. (2016). Machine learning in manufacturing: advantages, challenges, and applications. Production and Manufacturing Research, 4(1), 23–45. https://doi.org/10.1080/21693277.2016.1192517 [7] Xayyasith, S., Promwungkwa, A., & Ngamsanroaj, K. (2019). Application of Machine Learning for Predictive Maintenance Cooling System in Nam Ngum-1 Hydropower Plant. International Conference on ICT and Knowledge Engineering, 2018-November, 43–47. https://doi.org/10.1109/ICTKE.2018.8612435
Refbacks
- 当前没有refback。