开放期刊系统

量子引力调模的中子超流态核反应:新型核能机制

文明 孙

摘要

本文提出了一种新颖的核反应机制——量子引力调制中子超流体反应 (QGM-NSR)。该机制假设强引力场(例如,在高能加速器或中子星内部模拟的引力场)通过量子引力效应 诱导产生中子超流体状态,从而触发一种高效且副产物极少的核反应。通过理论推导和蒙特 卡洛模拟建立了该反应模型,预测其反应速率峰值约为 1.0× 107次/秒,能量密度为 1.05 × 1012 焦耳/千克,谐振频率为 1012 赫兹。一项重要的原创性发现是:在引力加速度 g =10 13. 5 米每二次方秒 和 中子数密度 ρ = 104,4每立方米 的条件下, 出现了自组织临界 性 (SOC) ,其证据表现为 1/f功率谱密度特性,这暗示了中子超流体与引力耦合中存在新 的物理现象。本文提出了假设性的实验设计和包含三个阶段的验证路径。该研究为核能领域 提供了一个开创性的视角,在高效发电、核废料管理和深空探索方面具有潜在应用价值。

关键词

量子引力;中子超流体;核反应;能量密度;自组织临界性


参考

Donoghue, J. F. (1994). Effective field theory. Annual Review of Nuclear and Particle

Science, 44(1), 389-423. DOI: 10.1146/annurev.ns.44.120194.002125

Ashtekar, A., & Lewandowski, J. (2004). Background independent quantum gravity: A status

report. Classical and Quantum Gravity, 21(15), R53-R152. DOI: 10.1088/0264-9381/21/15/R01

Migdal, A. B. (1959). Theory of finite Fermi systems and applications to atomic nuclei.

Nuclear Physics, 13(1), 655-676. DOI: 10.1016/0029-5582(59)90441-1

Page, D., Reddy, S. (2011). Dense matter in compact stars: Theoretical developments and

observational constraints. Annual Review of Nuclear and Particle Science, 56, 327–374.

DOI:10.1146/annurev.nucl.56.080805.140600

Dean, D. J., & Hjorth-Jensen, M. (2003). Pairing in nuclear systems: from neutron stars to

finite nuclei. Reviews of Modern Physics, 75(3), 607. DOI: 10.1103/RevModPhys.75.607

Berges, J., Borsányi, S., & Wetterich, C. (2015). Quantum many-body systems out of

equilibrium: From fields to atoms. Journal of Physics G: Nuclear and Particle Physics, 42(10),

DOI: 10.1088/0954-3899/42/10/103001

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953).

Equation of State Calculations by Fast Computing Machines. The Journal of Chemical Physics,

(6), 1087–1092. DOI: 10.1063/1.1699114

Liebster, N., Geng, T., & Schmitz, L. (2025). Observation of pattern stabilization in a

driven superfluid. Physical Review X, 15(1), 011026. DOI: 10.1103/PhysRevX.15.011026

Gabler, M., Gill, R., & Rezzolla, L. (2023). Resonant excitation of neutron star

oscillations through magnetic field decay. Monthly Notices of the Royal Astronomical Society,

(3), 4212–4228. DOI: 10.1093/mnras/stad1074

Green, D., & Tsamis, N. C. (2023). Quantum gravity corrections to scalar field dynamics

in curved spacetime. Journal of Cosmology and Astroparticle Physics, 2023(07), 011. DOI:

1088/1475-7516/2023/07/011

Schmitt, A. (2023). Dense matter in compact stars: Superfluidity, superconductivity, and

hyperons. Progress in Particle and Nuclear Physics, 130, 104033.DOI:10.1016/j.ppnp.2023.104033

Alford, M. G., & Good, G. (2023). Color superconductivity in quark matter and neutron

star interiors. Reviews of Modern Physics, 95(1), 015002. DOI: 10.1103/RevModPhys.95.015002

Löffler, F., Mewes, V., & Müller, H. (2022). Testing gravity-induced decoherence in

quantum superfluids. Nature Physics, 18(10), 1184–1190. DOI: 10.1038/s41567-022-01706-9

Banerjee, D., et al. (2022). Quantum simulation of lattice gauge theories in

high density regimes. Nature Communications, 13(1), 1046. DOI: 10.1038/s41467-022-28638-6

Graber, V., et al. (2023). Statistical signatures of self-organized criticality in

magnetar bursts and glitches. Monthly Notices of the Royal Astronomical Society,521(1), 671–

DOI: 10.1093/mnras/stad314

Refbacks

  • 当前没有refback。