开放期刊系统

在马来西亚粉煤灰基土工合成物混凝土中添加钩状和直 状钢纤维对坍落度、密度、吸水率和机械性能的比较

艾哈 迈德, 穆斯 塔法, 穆罕 默德

摘要

地质聚合物混凝土有可能取代普通波特兰水泥,从而减少对环境的二氧化碳排放。添加不同数量的钢纤维
以及不同类型的端部形状的纤维,可以改变土工聚合物混凝土的性能。生产土工聚合物混凝土时使用的硅酸铝(粉
煤灰)的来源可能导致不同的结果。本研究主要是比较添加了钩状钢纤维的马来西亚粉煤灰土工合成物混凝土和添
加了直端钢纤维的土工合成物混凝土的物理和机械性能。马来西亚粉煤灰首先通过 X射线荧光(XRF)进行表征,
以确定其化学成分。通过混合粉煤灰、碱性活化剂、骨料和特定数量的钩状或直状钢纤维,生产出钢纤维增强的土
工聚合物混凝土样品。两种类型纤维的钢纤维添加量按体积百分比分别为 0%、0.5%、1.0%、1.5%和 2.0%。样品在室
温下进行了固化。本文研究了增强型土工聚合物混凝土的物理性能(坍落度、密度和吸水率)。同时,还研究了机械
性能,即抗压以及抗折强度。结果表明,两种类型的纤维添加在土工聚合物混凝土中的物理性能模式几乎相似,其
中坍落度随着密度的增加而降低,吸水率随着纤维添加量的增加而增加。然而,在土工合成物混凝土中加入钩状钢
纤维所产生的坍落度比加入直状钢纤维的低。同时,与加入直钢纤维的样品相比,加入钩状钢纤维的土工合成物混
凝土显示出更高的密度和吸水率。然而,这种差异并不显著。此外,与添加直钢纤维的样品相比,添加钩状钢纤维
的样品具有更好的抗压和抗折强度,其中纤维添加量为 1.0%时,抗折强度最高。

关键词

土工聚合物;碱活性材料;钢筋混凝土;钢纤维

全文:

PDF

参考

[1]A Hashim MF, Abdullah MMAB, Sandu AV, et

al. Advanced glass reinforced epoxy filled fly ash based

geopolymer filler: Preparation and characterization on piping

materials. IOP Conf. Ser. Mater. Sci. Eng. 2019; 572: 012037.

[2]Ariffin N, Abdullah MMAB, Zainol MRRMA, et al.

Review on Adsorption of Heavy Metal in Wastewater by Using

Geopolymer. Matec Web Conf. 2017; 97: 01023.

[3]Bindiganavile V, Banthia N. Impact response of the

fiber-matrix bond in concrete. Can. J. Civ. Eng. 2005; 32:

924–933.

[4]Kim J-I, Gong M-H, Song J-Y, et al. A Study of

Waterproof Reinforcement Layers for the Post-Cracking

Behavior of Fiber Reinforced Concrete. Appl. Sci. 2020; 10:

5762.

[5]Berkowski P, Kosior-Kazberuk M. Effect of Fiber

on the Concrete Resistance to Surface Scaling Due to Cyclic

Freezing and Thawing. Procedia Eng. 2015; 111: 121–127.

[6]Frazão CMV, Barros JAO, Camões A, et al. Corrosion

effects on pullout behavior of hooked steel fibers in selfcompacting concrete. Cem. Concr. Res. 2016; 79: 112–122.

[7]Qian C, Stroeven P. Development of hybrid

polypropylene-steel fibre-reinforced concrete. Cem. Concr.

Res. 2000; 30: 63–69.

[8]Ranjbar N, Zhang M. Fiber-reinforced geopolymer

composites: A review. Cem. Concr. Compos. 2020; 107:

103498.

[9]Alrshoudi F, Mohammadhosseini H, Tahir MM, et al.

Sustainable Use of Waste Polypropylene Fibers and Palm Oil

Fuel Ash in the Production of Novel Prepacked Aggregate

Fiber-Reinforced Concrete. Sustainability 2020; 12: 4871.

[10]Zheng X, Zhang J, Wang Z. Effect of multiple matrix

cracking on crack bridging of fiber reinforced engineered

cementitious composite. J. Compos. Mater. 2020; 54: 3949–

3965.


(43 摘要 Views, 88 PDF Downloads)

Refbacks

  • 当前没有refback。