开放期刊系统

钢纤维增强混凝土的电阻率–影响参数

迈克 尔·, 西蒙 ·雷, 托马 斯·

摘要

本文对纤维含量为 0kg/m3
~80kg/m3
的不同钢筋混凝土的电阻率进行了系统研究,以识别混凝土成分与纤维
类型和含量之间相互作用对电阻率的可能影响。在文献综述的基础上,本文确定了对普通混凝土电阻率有显著影响
的 w/c比、粘结剂含量、磨粒高炉渣(GGBS)和细度 4个参数,研究了它们对电阻率和相互作用的影响。实验结果
强调,纤维的添加导致电阻率显着降低,与混凝土成分的所有其他参数无关。此外,本文还表明混凝土的孔隙率较
高,例如,由于较高的 w/c比率,也会导致较低的电阻率。这些结果与平纹混凝土的文献综述一致,而随着纤维含
量的增加,混凝土成分对电阻率的影响较小。因此,纤维加固的影响不受混凝土成分变化的影响。一般来说,纤维
用量越高会导致电阻率降低,但对电阻率的影响随不同类型的钢纤维而略有不同。基于这项研究,可以清楚地展示
使用电阻率测量来确定纤维含量的潜力。

关键词

钢纤维增强混凝土;电阻率;纤维含量


参考

[1]Reichling K, Raupach M, Klitzsch N. Determination of

the distribution of electrical resistivity in reinforced concrete

structures using electrical resistivity tomography. Mater.

Corros. 2015; 66: 763–771.

[2]Andrade C. Model for prediction of reinforced concrete

service life based on electrical resistivity. IBRACON Mater. J.

2005, 1, 1–5.

[3]Bürchler D. Der elektrische Widerstand von

zementösen Werkstoffen. ETH Zürich 1996.

[4]Chen B, Wu K, Yao W. Conductivity of carbon fiber

reinforced cement-based composites. Cem. Concr. Compos.

2004; 26: 291–297

[5]Azarsa P, Gupta R. Electrical resistivity of concrete for

durability evaluation: A review. Adv. Mater. Sci. Eng. 2017;

2017: 8453095.

[6]Lübeck A, Gastaldini ALG, Barin DS, et al.

Compressive strength and electrical properties of concrete with

white portland cement and blast-furnace slag. Cem. Concr.

Compos. 2012; 34: 392–399.

[7]Ramezanianpour AM, Esmaeili K, Ghahari SA, et al.

Influence of initial steam curing and different types of mineral

additives on mechanical and durability properties of selfcompacting concrete. Constr. Build. Mater. 2014; 73: 187–

194.

[8]Beek van A, Stenfert Kroese W. 24 Years of

Experience with the Electrical Conductivity to Deterimine

Material Properties of Concrete. HERON 64 2019; ½: 3–19.

[9]Cosoli G, Mobili A, Tittarelli F, et al. Electrical

resistivity and electrical impedance measurement in mortar

and concrete elements: A systematic review. Appl. Sci. 2020;

10: 9152.

[10]Liu S, Wang L, Gao Y, et al. Comparing study on

hydration properties of various cementitious systems. J. Therm.

Anal. Calorim. 2014; 118: 1483–1492.

[11]Chen W, Brouwers HJH. The hydration of slag, part 2:

Reaction models for blended cement. J. Mater. Sci. 2006; 42:

444–464.

Refbacks

  • 当前没有refback。