工学结合模式下"染整基础化学"课程的改革与实践

张滇溪

(常州纺织服装职业技术学院学院 江苏常州 213164)

摘要:随着染整行业的快速发展,传统"染整基础化学"课程难以满足实际需求,亟需改革创新。本文提出在工学结合模式下进行课程改革与实践,旨在提高学生实践能力和创新意识。具体策略包括:优化课程体系,突出应用导向;创新教学方法,注重能力培养;建设校企平台,促进交流合作;开展染整项目教学,培养创新意识。通过这些措施,可以有效提升学生的实践能力,深化产数融合,为染整行业发展提供人才支持和持续动力,助力行业转型升级和可持续发展。

关键词:工学结合;染整基础化学;改革;实践

引言:染整行业是纺织工业的重要组成部分,随着技术进步和市场需求变化,对人才的要求不断提高。"染整基础化学"作为培养染整专业人才的核心课程,在人才培养中发挥着关键作用。然而,传统的教学模式过于注重理论知识灌输,忽视了实践能力培养,难以适应行业发展需求。工学结合模式作为一种新型教学模式,强调理论与实践相结合,注重培养学生的动手能力和创新精神,为"染整基础化学"课程改革提供了新思路。深入探讨工学结合模式下的课程改革与实践,对提高染整人才培养质量具有重要意义。

一、工学结合模式的内涵与特征

工学结合模式是一种将工程实践与学术理论相结合的创新教学模式,其核心理念是注重实践应用,强调理论与实践相结合,培养学生的动手能力和创新精神。这种模式要求教学内容必须紧密结合工程实际,着眼于解决实际问题,同时还要与相关学科的基础理论知识相融合^[1]。在教学过程中,工学结合模式倡导采用灵活多样的教学方法,如项目教学、案例教学、现场教学等,力求创造真实的工程情境,激发学生学习兴趣和主动性。通过鼓励学生积极参与、自主探索,引导他们将所学知识运用到实践中去,在动手实践的过程中发现问题、分析问题、解决问题,从而达到提高动手能力和培养创新精神的目的。工学结合模式是一种面向工程实际、强调实践能力、注重创新精神培养的教学模式,对于培养高素质应用型人才具有重要意义。

二、工学结合模式下"染整基础化学"课程改革与实践的 重要意义

(一)提高学生的实践能力

工学结合模式下的"染整基础化学"课程改革,为提高学生实践能力提供了有效途径。通过将理论教学与实践教学深度融合,学生不仅可以系统地学习染整化学的基础理论知识,如染料化学、印染助剂化学、染色原理等,还能有机会深入染整生产一线,亲身参与到染色、印花、后整理等生产实践环节中心。在实践过程中,学生能够直观地了解染料和助剂的性能与应用、染整工艺流程与设备操作等,将所学理论知识与生产实际相结合,加深对专业知识的理解和掌握。同时,学生通过动手实践,能够发现生产中存在的实际问题,运用所学知识分析问题、解决问题,在实践中培养严谨的工作态度、提高动手能力和解决实际问题的能力。此外,在实践教学环节中,学生还能接触到染整行业的前沿技术和发展动态,开阔专业视野,为未来从事相关工作奠定坚实的实践基础。

(二)促进产学研深度融合

工学结合模式下的"染整基础化学"课程改革,为促进产 学研深度融合提供了有力支撑。通过工学结合,可以建立起高 校与染整企业之间的紧密合作关系,实现优势互补、资源共享, 形成产学研协同育人的良性机制。一方面,染整企业可以为高校提供实习实训平台,让学生近距离接触生产一线,感受企业文化,了解行业发展现状,积累实践经验。企业还可以参与到人才培养方案制定、课程设计、项目实施等环节,为高校提供行业发展所需的人才规格和技能要求,共同培养符合行业需求的高素质人才。另一方面,高校可以发挥自身的科研优势,为企业提供技术支持和智力服务,攻克生产中的技术难题,推动科研成果的转化应用。高校还可以为企业定制培训课程,提升在职员工的专业素质和技能水平。通过产学研的深度融合,可以实现人才培养与产业需求的无缝对接,促进校企双方的共同发展。

(三)培养创新型人才

工学结合模式下的"染整基础化学"课程改革,为培养创新型人才提供了有效的平台和途径。在工学结合的教学过程中,学生不仅要学习染整化学的基础理论知识,还要参与到实际的染整项目中,从项目调研、方案设计到实施操作,全过程参与。在项目实践中,学生会遇到各种复杂的实际问题,需要运用所学知识,发挥创新思维,提出解决方案。这个过程可以充分锻炼学生发现问题、分析问题、解决问题的能力,培养他们独立思考、勇于创新的意识和精神。同时,在项目实践中,学生还能接触到染整行业的最新技术和发展趋势,了解行业对创新型人才的需求,激发他们的创新动力。通过参与创新实践项目,学生可以提高创新意识,增强创新能力,为今后从事创新性工作奠定良好基础。此外,在工学结合的过程中,学生还能培养团队协作精神、沟通表达能力、组织管理能力等,这些都是创新型人才所必备的素质。因此,工学结合模式对于培养高素质、创新型染整人才具有重要意义。

三"染整基础化学"课程内容体系构建

在工学结合模式下,"染整基础化学"课程内容体系的构建应紧密结合染整行业的实际需求,科学合理地设置理论教学与实践教学的比重,形成相互支撑、相互促进的有机整体。课程内容应包括两大部分:一是染整化学的基础理论知识,如染料化学、印染助剂化学、染色原理等,这是学生掌握专业知识、开展实践应用的必要基础;二是染整生产过程中的实际应用,如染色工艺、印花工艺、后整理工艺等,通过生产实践环节,学生能将理论知识与生产实际相结合,加深对专业知识的理解和掌握。同时,课程内容还应与时俱进,紧跟染整行业发展的最新动态和技术进展,适时更新和充实教学内容,确保学生掌握的知识与行业发展同步。在教学方法上,要采用多元化的模式,理论与实践相结合,课内与课外相结合。除传统的课堂讲授外,还应注重案例分析、项目教学、现场教学等实践环节,通过真实工程项目的实施,培养学生发现问题、分析问题、解

决问题的能力,提高学生的动手能力和创新意识。此外,工学结合还应注重校企合作,积极开展产学研合作项目。高校与染整企业应建立紧密的合作关系,企业为学生提供实习实训岗位和创新实践平台,让学生在真实的工作环境中接受锻炼,提升实践技能;高校为企业输送高质量人才,提供智力和技术支持。

四、工学结合模式下"染整基础化学"课程的改革与实践 策略

(一)优化课程体系,突出应用导向

工学结合模式下"染整基础化学"课程体系的优化,必须 立足于染整行业的实际需求, 以提高学生的实践应用能力为根 本目标。课程设计应着眼于理论与实践的紧密结合, 在重新梳 理和调整理论教学内容的基础上,精选对实践应用具有指导意 义的关键知识点,突出其与生产实际的联系,使理论教学更加 聚焦、更具针对性^[3]。与此同时,还要大幅提升实践教学在课程 体系中的比重,通过实验、实训、实习等多种途径,让学生深 入染整生产一线,亲身参与生产实践,了解染整工艺流程,掌 握关键技术操作,积累宝贵的实际工作经验。实践教学内容要 与理论教学相互配合、循序渐进,形成相互支撑、相互促进的 有机整体。例如,在学习染料化学理论知识之后,可以紧接着 安排染料合成实验和应用实践: 在掌握染色原理的基础上, 可 以立即开展染色工艺实训和生产实习。通过理论与实践的交替 进行、反复迭代, 使二者相互印证、相互深化, 课程内容将更 加贴近生产实际, 凸显鲜明的应用性和实践性。除此之外, 课 程体系的优化还应重视学生综合职业能力的培养。在实践教学 过程中, 要有机融入沟通协调、团队合作、问题解决等职业素 养和技能的训练,通过具体项目、真实情境,锻炼学生在实际 工作中所需要的各种能力,提高其职业适应性和竞争力,最终 使学生成长为染整行业需要的高素质应用型人才。

(二)创新教学方法,注重能力培养

工学结合模式下,创新教学方法是提高"染整基础化学" 课程教学质量、培养学生实践能力的关键举措。面对工学结合 的新要求, 传统的灌输式教学方式已难以为继, 亟需教师转变 教学理念, 积极探索和运用启发式、讨论式、案例式等多种教 学方法,充分调动学生学习的主动性和积极性4。在具体实施过 程中, 教师可以采取设置问题情境的方式, 精心设计一系列与 教学内容相关、与生产实践紧密结合的问题, 引导学生自主思 考、积极探索,鼓励学生大胆提出自己的见解和想法,通过小 组讨论、头脑风暴等形式,促进学生在交流碰撞中启发灵感、 激发创新思维。针对理论教学环节, 教师要注重理论与实际的 联系,善于运用生动形象的实例,将抽象晦涩的理论知识与具 体的生产实践相结合,帮助学生建立起理论学习与实际应用之 间的桥梁,深化对知识的理解和掌握。在实践教学过程中,教 师要精心设计实验、实训项目,强化动手操作环节,引导学生 在实践中发现问题、分析问题、解决问题,全面培养学生的实 践能力和创新能力。与此同时, 教师还应积极利用现代信息技 术手段,大力开发虚拟仿真实验、在线课程等数字化教学资源, 创设仿真的生产环境和工艺流程, 让学生足不出户即可身临其 境,拓展学习时间和空间,为学生提供个性化、自主化的学习 支持。

(三)建设校企平台,促进交流合作

工学结合模式的有效实施,离不开校企合作平台的支撑。 "染整基础化学"课程的改革与实践,应以建设紧密型校企合 作关系为突破口,搭建产学研一体化平台,实现资源共享、优 势互补、互利共赢。学校应主动走出去,与行业龙头企业、科 研院所建立战略合作关系,吸引企业深度参与人才培养全过程 [5]。校企双方可以共同制定人才培养方案,开发课程体系和教学内容,合作建设实习实训基地,为学生提供实践锻炼的机会。同时,要建立校企人员双向交流机制。一方面,聘请企业的技术专家、工程师担任兼职教师,走进课堂讲授前沿技术、分享工程案例,指导学生的实践创新活动;另一方面,选派教师到企业挂职锻炼,参与企业的技术研发和生产实践,了解行业发展动态,及时更新教学内容。通过校企合作平台的建设,可以实现人才培养与产业需求的精准对接,为学生提供了解行业前沿、积累实践经验、增强就业竞争力的宝贵机会,也为企业输送了高素质的专业人才,实现了人才培养和技术创新的良性互动。

(四)开展染整项目教学,培养创新意识

项目教学是工学结合模式下"染整基础化学"课程改革的 重要抓手,对于培养学生的创新意识和实践能力具有独特优势。 在教学过程中,可以针对染整行业的实际问题,精心设计一系 列项目任务, 让学生自主组建团队, 完成从项目调研、方案设 计到实施操作的全过程。例如,可以设计"环保型染料的合成与 应用"项目, 学生需要调研环保染料的市场需求和技术现状, 设 计合成路线和工艺条件,并进行小试和中试生产,最终形成应 用方案。在项目实施过程中, 学生必须发挥团队的集体智慧, 充分运用所学知识, 查阅文献资料, 开展创新实验, 攻克技术 难关。教师则要充当"导演"和"导航员"的角色,引导学生明确 项目目标, 合理分工协作, 科学组织实施, 及时提供必要的指 导和帮助。通过项目教学,可以将理论知识与实际应用紧密结 合,提高学生运用专业知识解决实际问题的能力。同时,在项 目实施过程中, 学生必然会遇到各种挑战和困难, 需要打破常 规思维,提出创新的解决方案。这一过程可以有效地培养学生 的创新意识,锻炼他们的创新思维和创新能力,为未来从事创 新性工作奠定重要基础。

结束语

工学结合模式下"染整基础化学"课程的改革与实践,是适应染整行业发展需求、提高人才培养质量的必然选择。通过优化课程体系、创新教学方法、建设校企合作平台、开展染整项目教学等措施,可以有效提升学生的实践能力和创新意识,深化产教融合,为染整行业发展提供持续动力。未来,在智能制造、绿色染整等新技术、新理念的推动下,染整行业还将迎来更大的发展机遇。高校应紧跟行业发展趋势,不断完善工学结合人才培养体系,深化校企合作,强化学生工程实践能力,培养更多高素质、创新型染整人才,助力行业转型升级和可持续发展。

参考文献:

[1]杨净雯.关于校企合作、工学结合"2+1"人才培养模式课程体系改革的研究与实践[J].中外企业文化,2023(08):184-186.

[2] 撒然.工学结合一体化课程教学改革实践[J].职业, 2023(08): 37-40.

[3]张丽丽,尹洪宗,高吉刚,等.互联网背景下基础化学实验教学的改革与实践[J].实验室科学,2021,24(02):163-165+170. [4]刘利,姚思童,张进,等.创新实践导向的基础化学课程群教学改革与实践[J].广州化工,2020,48(16):194-195+201.

[5]伍乔.基于工匠精神培养的基础化学实验教学改革与实践[]].化工管理,2020(21):17-18.

作者简介: 姓名: 张滇溪(1975年2月-), 性别: 男, 民族: 汉,籍贯: 安徽宿县,单位: 常州纺织服装职业技术学院, 职称: 讲师/工程师,学历: 研究生, 研究方向: 染整。