

远动脉穿刺术在冠状动脉介入诊疗中的临床应用进展

李岸舟 1 宋红飞 2 邹 爽 3 孟 永 1 白文伟 1 刘小永 1*

- 1. 昆明医科大学第二附属医院 云南昆明 650000
- 2. 红河州第二人民医院 云南建水 654300
- 3. 曲靖市第一人民医院 云南曲靖 655000

摘 要:动脉穿刺术在冠状动脉介入诊疗中扮演着重要角色,尤其是远端桡动脉穿刺术(distal transradial access, dTRA)的应用日益受到关注。随着冠状动脉介入治疗的不断发展,传统的近端桡动脉穿刺(classic transradial access, cTRA)及股动脉穿刺方法在临床中仍存在一些不足,如穿刺成功率低、并发症发生率高等问题。本文旨在综述 dTRA 的临床应用进展,重点比较其与 cTRA 及股动脉穿刺的优劣,探讨影响穿刺成功率的因素、并发症的预防措施以及相关器械的创新。通过结合最新的随机对照试验、观察性研究及荟萃分析,文章为临床医生提供循证医学的穿刺策略选择参考,促进冠状动脉介入诊疗技术的优化及安全性提升。通过加强对 dTRA 的研究与应用,可望提高患者的舒适度和术后恢复质量,进一步推动该领域的发展。

关键词:动脉穿刺术;远端桡动脉穿刺; PCI; 桡动脉闭塞;穿刺并发症;穿刺成功率

动脉穿刺术作为冠状动脉介入诊疗中的基础操作,其安全性和有效性直接影响着介入治疗的成功率和患者的预后。在传统的冠状动脉介入治疗中,cTRA 因其操作简便和患者舒适而被广泛采用。然而,近端桡动脉穿刺也存在着较高的桡动脉闭塞率和穿刺相关的并发症,这些问题促使研究者们探索更安全的穿刺技术。dTRA 的优势在于其解剖位置的特殊性,能够有效降低桡动脉闭塞的风险。与传统的 cTRA 相比,cTRA 在进行经皮冠状动脉介入治疗时具有更低的桡动脉闭塞率,这一差异在统计上显著[1][2]。此外,dTRA 还显示出在穿刺时间、成功率和术后并发症发生率等方面的良好表现。根据一项大规模的前瞻性研究,dTRA 成功率高达96.2%,并且仅有 0.8% 的患者出现了术后轻微出血 [3][4]。

在对远端桡动脉穿刺的临床应用进行探讨时,分析其局限性同样重要。尽管大多数研究表明 dTRA 在安全性和有效性方面的优势,但也有研究指出其在技术操作上较为复杂,且需要更多的操作时间和穿刺尝试^[5]。dTRA 的穿刺成功率虽然高,但在单次穿刺成功的比例上不如近端桡动脉穿刺^[6]。因此,操作者的经验和患者的生理特征(如桡动脉直径)对成功率有重要影响。展望未来,远端桡动脉穿刺在冠状动脉介入诊疗中的应用前景广阔。随着技术的不断发展和完善,dTRA 有望成为一种标准化的穿刺方法,特别是在需要降低

桡动脉闭塞风险的患者群体中。进一步的随机对照试验和大规模的前瞻性观察研究将有助于验证 dTRA 的长期安全性和有效性,并为其在临床实践中的广泛推广奠定基础。

1 动脉穿刺术

1.1 动脉穿刺的传统途径及其局限性

在冠状动脉介入诊疗中,动脉穿刺是一项重要的技术,其传统途径主要包括近端桡动脉穿刺和股动脉穿刺。近端桡动脉穿刺因其操作简单、并发症发生率低而被广泛采用。然而,它也存在一些局限性,近端桡动脉穿刺的成功率在不同患者中存在差异,尤其是在解剖结构复杂或动脉钙化的患者中,穿刺难度较大¹¹;近端桡动脉穿刺可能导致桡动脉痉挛和血肿等并发症,影响患者的舒适度和后续治疗效果。另一方面,股动脉穿刺虽然在一些情况下被视为替代选择,尤其是在桡动脉穿刺失败时,但其适应症和风险也需谨慎评估。股动脉穿刺的并发症发生率相对较高,包括出血、假性动脉瘤和下肢深静脉血栓等¹⁷。尽管股动脉穿刺可以提供更大的血管通道,但患者的恢复时间较长,且可能影响下肢的功能。因此,对于需要快速康复的患者,股动脉穿刺并不是最佳选择。

传统穿刺方法的并发症影响了患者的临床结果,尤其 是在急性冠脉综合征患者中^[8]。现代医学研究表明,采用新 技术和方法可以显著降低这些并发症的风险,超声引导下的

穿刺技术已被证明可以提高穿刺的成功率并减少并发症的 发生^[9]。尽管传统的穿刺方法仍然是临床实践中的主流选择, 但其局限性和潜在风险促使了新技术的不断发展,以提高冠 状动脉介入治疗的安全性和有效性。

2 远端桡动脉穿刺

2.1 远端桡动脉穿刺的发展背景与解剖学基础

远端桡动脉穿刺的成功率高,且操作过程中的并发症 发生率较低,这为其在介入治疗中的广泛应用提供了有力的 依据。一项对 620 名患者进行的研究发现,远端桡动脉穿刺 组的动脉闭塞率显著低于传统桡动脉穿刺组,提示这一新技 术在减少血管闭塞风险方面具有明显优势^[1]。此外,随着技 术的不断完善与设备的更新,远端桡动脉穿刺在未来的心血 管介入治疗中将发挥更加重要的作用,为患者提供更安全、 有效的治疗选择^[24]。

2.2 远端桡动脉穿刺的临床应用效果及安全性评价

多中心注册研究和荟萃分析的结果表明,远端桡动脉穿刺作为一种新兴的穿刺方式,相较于传统的前臂桡动脉穿刺,展现出更优的穿刺成功率和手术完成率。目前有研究显示远端桡动脉穿刺的成功率高达 95.13%,而传统的桡动脉穿刺则略低,显示了远端桡动脉穿刺在实际应用中的潜在优势 [10[11]]。

除了影响穿刺成功率的因素外,手术完成率也是临床评估的重要标准^[12]。研究表明,采用远端桡动脉穿刺不仅提高了穿刺成功率,还缩短了手术时间,降低了术后并发症的发生率,这使得该技术在临床推广中愈发受到重视^{[13][14]}。

2.3 远端桡动脉穿刺并发症发生率及类型

在冠状动脉介入诊疗中,采用远端桡动脉穿刺的方式逐渐受到青睐。远端桡动脉穿刺显著降低了桡动脉闭塞(Radial artery occlusion, RAO)的发生率,这一发现为临床提供了更安全的选择。一项研究通过对 620 名患者的分析,发现远端桡动脉穿刺组的 RAO 发生率显著低于传统桡动脉穿刺组,差异具有统计学意义[1]。这表明,采用远端桡动脉穿刺可以有效降低该并发症的风险 [25]。

在出血和血肿方面,远端桡动脉穿刺术的出血率较低, 且术后血肿的发生率也较为可控。在一项研究中,远端桡动脉穿刺组的血肿发生率为 2.5%,而传统穿刺组为 4.6%^{[1][15]}。 对于并发症的预防和处理策略,确保穿刺技术的规范性和使用超声引导技术是关键。超声引导可以提高穿刺的成功率并 降低并发症发生的风险[9]。

- 2.4 影响远端桡动脉穿刺成功率的临床因素分析
- 2.4.1 血管解剖特征与超声评估的作用

较大的血管直径往往能够提高穿刺的成功率,这是因为较大的血管提供了更大的可操作空间,降低了穿刺失败的风险。具体而言,使用超声引导进行穿刺时,可以清晰地观察到血管的直径以及其解剖位置,从而帮助临床医生选择合适的穿刺点和穿刺角度,以提高穿刺的精确性和成功率。比较传统桡动脉穿刺与远端桡动脉穿刺的研究显示,远端桡动脉由于其内径相对较大,导致穿刺成功率显著提高,且并发症发生率较低[1126]。

超声引导下穿刺技术的应用在近年来得到了广泛推广,超声检查能够在穿刺前有效评估血管的解剖特征,包括血管的走行、直径、深度等,从而为穿刺提供重要的信息。[13][9]。血管解剖特征与超声评估在冠状动脉介入诊疗中的应用,有助于提高穿刺的成功率,减少并发症的发生[27]。

2.4.2 患者相关因素

在冠状动脉介入治疗中,患者的性别、年龄、体重以及合并疾病(如糖尿病、高血压)等因素都会对穿刺成功率产生显著影响。男性患者相较于女性患者在动脉穿刺时的成功率更高,可能与男性的血管直径更大有关^[16]。年龄也是一个重要的因素,老年患者因血管弹性降低和解剖结构变化,穿刺的难度和失败率均有所增加^[1]。此外,体重指数(Body Mass Index,BMI)较高的患者在穿刺过程中更易出现并发症,提示在进行穿刺时需充分评估患者的体重情况^[16]。

合并疾病同样在很大程度上影响穿刺的成功率。糖尿病患者往往因微血管病变而导致血管功能不良,从而增加穿刺的难度^[9]。高血压患者在穿刺后出血风险增加,这也可能与其血管的内皮功能障碍有关^[16]。合并糖尿病和高血压的患者在接受冠状动脉介入治疗时,需采取更为谨慎的穿刺策略,以提高穿刺的成功率并降低并发症的发生率^[1]9]。

此外,患者在穿刺过程中所感受到的痛感及穿刺次数与血管痉挛的发生密切相关。接受多次穿刺的患者更容易产生血管痉挛,进而影响穿刺的成功率和术后恢复情况[16[1]。对于疼痛的管理,使用局部麻醉剂(如利多卡因喷雾)可以有效降低穿刺时的痛感,从而减少患者的焦虑和不适感,进而提高穿刺的成功率[17[18]。某些专用的止血装置能够在不影响血流的情况下,提供有效的局部压迫,从而防止血肿或

假性动脉瘤的形成[12][9]。

值得注意的是穿刺方法和设备的选择也会因患者的个体差异而有所不同。患者的性别、年龄和 BMI 等因素都会影响穿刺的难度和成功率。女性患者在接受桡动脉穿刺时,成功率相对较低,这可能与桡动脉的解剖结构及其生理特点有关[16[19]。

2.5 远端桡动脉穿刺与传统近端桡动脉穿刺的对比研究

2.5.1 穿刺时间与手术流程效率

在一项比较经典桡动脉和远端桡动脉穿刺的研究中,尽管两组在穿刺时间和手术时间上没有显著差异,但远端桡动脉组的桡动脉栓塞率显著低于经典桡动脉组,显示出远端桡动脉穿刺在术后并发症控制上的优势^[1]。这意味着虽然穿刺时间可能稍长,但由于其对术后并发症的有效控制,远端桡动脉穿刺在整体手术流程效率上可能更具优势^{[20[21]}。

2.5.2 并发症发生率差异

在冠状动脉介入治疗中,穿刺部位的选择对并发症的发生率有显著影响。使用远端桡动脉穿刺(DRA)与传统的桡动脉穿刺(TRA)相比,显著降低了桡动脉闭塞和血肿的发生率。这一点在 620 例接受冠状动脉造影或介入治疗的患者中得到了验证,远端桡动脉组的闭塞率显著低于传统桡动脉组,差异具有统计学意义。

此外, DRA 还表现出在减少穿刺部位血肿发生率方面的优势。在一项对 252 名患者的研究中, DRA 组的血肿发生率为 2.5%, 而传统桡动脉穿刺组则为 4.6%^[16]。这种差异表明, 远端桡动脉穿刺的临床应用不仅降低了并发症的发生率, 还可能改善患者的术后恢复质量 ^[22]。

总的来说远端桡动脉穿刺在降低桡动脉闭塞和血肿发生率方面具有明显优势,且在临床应用中显示出良好的安全性^[29]。

2.5.3 患者舒适度及术后恢复

在冠状动脉介入治疗中,患者的舒适度及术后恢复是非常重要的指标,直接影响到患者的满意度和治疗效果。首先,术后压迫时间的缩短是远端桡动脉穿刺的一大优势。与传统的桡动脉穿刺相比,采用远端桡动脉穿刺后,术后压迫时间明显减少,这为患者提供了更为快速的恢复体验。远端桡动脉穿刺组的术后压迫时间显著低于经典桡动脉穿刺组(291.6±10.5分钟 vs. 343.5±9.8分钟,P=0.047)^[23]。这一结果不仅提升了患者的舒适感,也使得患者能够更早地进行

恢复活动,减少了术后并发症的发生率。其次,患者疼痛评分及生活质量的改善是另一项重要的指标。远端桡动脉穿刺在减少术后疼痛方面表现优越^[17]。

2.6 远端桡动脉穿刺并发症的防治策略

医师术前进行评估,可以及时发现并处理可能的痉挛或血流不畅情况,从而提高介入治疗的安全性和有效性^[28]。

总的来说桡动脉痉挛的预防与管理需要多方面的综合 措施,包括药物预处理、术中镇静及疼痛控制等,以确保冠 状动脉介入治疗的顺利进行。

3 结论

dTRA 作为一种新兴的冠状动脉介入诊疗技术,展现了 其在降低桡动脉闭塞率和减少穿刺相关并发症方面的优越 性,相较于传统的近端桡动脉穿刺(pTRA),dTRA 不仅提 升了患者的舒适度,还改善了术后的恢复质量。这一技术的 发展无疑为冠状动脉介入治疗领域带来了新的希望。

总的来说,dTRA 作为一种新兴的冠状动脉介入技术,展现出了良好的临床应用潜力。推动其在临床中的广泛应用,需要我们不断探索技术的改进、加强培训和教育,同时也要注重患者个体化的需求和特征。未来,在科研和临床实践的共同努力下,dTRA 有望在冠状动脉介入治疗中发挥更加重要的作用,进一步提升患者的治疗体验和健康预后。

参考文献:

- [1] Wang H, Peng WJ, Liu YH, et al. A comparison of the clinical effects and safety between the distal radial artery and the classic radial artery approaches in percutaneous coronary intervention. Ann Palliat Med. 2020;9(5):2568–2574.
- [2] Cao J, Cai H, Liu W, Zhu H, Cao G. Safety and Effectiveness of Coronary Angiography or Intervention through the Distal Radial Access: A Meta-Analysis. J Interv Cardiol. 2021:4371744. Published 2021 None.
- [3] Wang H, Liu D, Guo J, et al. Analysis of the Efficacy and Safety of Coronary Catheterization through Distal Transradial Access: A Single–Center Data. Cardiovasc Ther. 2023:2560659.
- [4] Saunders SL, Casinader SJ, Fernandez RS, et al. "Distal radial first": feasibility and safety for coronary angiography and PCI in Australia. AsiaIntervention. 2025;11(1):35–43. Published 2025 Mar.
 - [5] Oliveira MD, Navarro EC, Caixeta A. Distal transradial

access for coronary procedures: a prospective cohort of 3,683 all-comers patients from the DISTRACTION registry. Cardiovasc Diagn Ther. 2022;12(2):208–219.

[6] Fu Y, Wang L, Zhang Z, Xia K, Xu L. Coronary catheterization via distal transradial access in patient with superficial radial artery: a case report. BMC Cardiovasc Disord. 2021;21(1):616. Published 2021 Dec 28.

[7] Li W, Xing Q, Liu Z, et al. The signaling pathways of traditional Chinese medicine in treating diabetic retinopathy. Front Pharmacol. 14:1165649. Published 2023 None.

[8] Cao G, Cai HX, Cao J. Advancement in Coronary Angiography or Percutaneous Coronary Intervention Using the Distal Transradial Artery Access in Acute Coronary Syndrome and Complex Coronary Artery Disease. Anatol J Cardiol. 2022;26(3):163–171.

[9] Liang Y, Liu P, Wei C, et al. Ultrasound—guided modified dynamic needle tip positioning technique for distal radial artery catheterization: A randomized controlled trial. J Vasc Access.:11297298241270537. Published online Aug 16,2024.

[10] Wang X, Zhang W, Xue S, Lasmar RB, Zhao D, Wang X. Efficacy and safety of uterine artery embolization via the distal radial approach for uterine fibroids or adenomyosis: a single-center retrospective cohort study. Gland Surg. 2024;13(5):663–668.

[11] Wang X, Xian L, Zhang W, Xu Y, Zhao D, Wang X. Feasibility and safety of transarterial chemoembolization in patients with liver cancer via the distal radial approach: a single-center retrospective cohort study. Transl Cancer Res. 2024;13(8):4500-4506.

[12] Yin X, Ren J, Lan W, et al. Microfluidics—assisted optimization of highly adhesive haemostatic hydrogel coating for arterial puncture. Bioact Mater. 12:133–142. Published 2022 Jun.

[13] Yang Q, Weng Q, He T, Jin X, Zhong W. Exploring the Effect of Pre–Connected Pressure Sensor on Ultrasound–Guided Radial Artery Puncture in Patients With Gastrointestinal Tumors: A Randomized Controlled Trial. J Clin Ultrasound. . Published online Apr 21,2025.

[14] Christine B, Barbara BA, Zehetmayer S, Wolfgang U.

Comparing compliance with the WHO surgical safety checklist and complication rates in gynecologic surgery between day and night shifts. Arch Gynecol Obstet. 2022;306(4):1101–1106.

[15] Roczniak J, Tarnawski A, Dziewierz A, et al. Radial artery spasms – angiographic morphology, risk factors and management. Postepy Kardiol Interwencyjnej. 2024;20(1):53–61.

[16] Du Y, Zhao J. [Feasibility study of arterial pressure measurement by snuff pot artery puncture]. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2023;35(10):1070–1073.

[17] Yıldız İU, Yıldırım Ç, Özhasenekler A, Şener A, Gökhan Ş. Effectiveness of lidocaine spray on radial arterial puncture pain: A randomized double-blind placebo controlled trial. Am J Emerg Med. 50:724–728.

[18] Uehara Y, Inoue YY, Kotoku A, Nakamura T, Wada M, Kusano K. Serious Scrotal Hematoma Due to Injury of Inferior Epigastric Artery: A Rare Complication of Femoral Puncture. JACC Case Rep. 2025;30(9):103281.

[19] Kusakabe T, Fukushima Y, Yoshino S, Hirakawa K, Horio Y, Abe H. A Case of Acute Ischemic Stroke due to Tandem Lesion Treated with Endovascular Thrombectomy by Internal Carotid Artery Direct Puncture. J Neuroendovasc Ther. 2025;19(1).

[20] Fouch é TW, Bond SM, Vrouwe SQ. Comparing the Efficiency of Tumescent Infiltration Techniques in Burn Surgery. J Burn Care Res. 2022;43(3):525–529.

[21] Gasson S, Solari F, Jesudason EP. Sustainable Hand Surgery: Incorporating Water Efficiency Into Clinical Practice. Cureus. 2023;15(4):e38331. Published 2023 Apr.

[22] Jian W, Cai R, Qi B, Li Q. Reduced Radial Artery Occlusion in Transradial Cerebral Angiography: Key Predictive Factors and Preventive Measures from a Single-Center Study of 543 Patients. Med Sci Monit. 30:e944297. Published 2024 Jul 22.

[23] Wang H, Yang N, Liu YW, Li YM. [Feasibility and safety study of distal radial artery approach in emergency PCI of elderly STEMI patients]. Zhonghua Xin Xue Guan Bing Za Zhi. 2024;52(3):276–280.

[24] Hatem E, Aslan O, Yıldırım S. Relationship between heart rate variability and radial artery spasm in patients

undergoing percutaneous coronary angiography via radial access.

Eur Rev Med Pharmacol Sci. 2023;27(7):2927–2935.

[25] Chyrchel M, Roczniak J, Surdacki A. Radial artery spasms impair invasive cardiological procedures' performance: a pharmacological approach to prevention and treatment. J Physiol Pharmacol. 2023;74(6).

[26] Abdelaziz TA, Mohamed RH, Dwedar AA, Eldeeb MEA, Abdelfattah AA, Saadawy SF. Association of endothelial nitric oxide synthase (Glu298Asp) gene polymorphism with radial artery spasm during cardiac catheterization in Egyptians. Mol Biol Rep. 2023;50(7):5747–5753.

[27] 钟玉婷, 梁伟东, 陈丽. 超声引导下桡动脉穿刺置管术临床应用研究进展[J]. 赣南医学院学报, 2023, 43(04):384-

388+418.

[28] 王鹏飞, 高丽华, 史文册, 等. 经远端桡动脉与经传统桡动脉人路行冠状动脉介入诊疗 RCT 研究的 Meta 分析 [J]. 医学信息, 2024, 37(15):21–26.

[29] 王鹏飞, 高丽华, 史文册, 等. 经远端桡动脉与经传统桡动脉人路行冠状动脉介入诊疗 RCT 研究的 Meta 分析 [J]. 医学信息, 2024, 37(15):21–26.

作者简介: 李岸舟(1999一),性别:男,民族:汉族,籍贯: 云南昆明,学历:硕士研究生,单位:昆明医科大学第二附 属医院,研究方向:心内科急危重症及介入诊疗.

通讯作者: 刘小永。

基金项目:云南省教育厅科学研究基金项目: 2024J0309