

孕期补充维生素D对妊娠结局的影响

崔巧婷 郭孟翔 陶瑞雪*

安徽医科大学第三附属医院,安徽 合肥 230061

摘 要:目的:探究孕期补充维生素 D 对母体糖代谢和妊娠结局的影响。方法:招募 2022 年 12 月~ 2024 年 5 月在我院定期产检并分娩的孕妇共 300 人,孕 11-20 周入组,并随机分为对照组和实验组各 150 人。实验组孕妇根据血清 25(OH) D3 水平补充不同剂量维生素 D3 胶囊,若 25(OH)D3 < 20ng/mL,补充剂量为 2400IU/d,若 25(OH)D3 为 20 ~ 30ng/ml,补充剂量为 1600IU/d,若 25(OH)D3 为 30ng/ml,补充剂量为 800IU/d,均持续服用 8 周,对照组孕妇常规产检。比较两组孕妇孕 24-28 周的血清 25(OH)D3、糖代谢指标、白细胞和妊娠期糖尿病等妊娠结局的发生率。结果:与对照组相比,孕 24-28 周实验组孕妇血清 25(OH)D3 升高 (P<0.05),OGTT 空腹血糖、2h 血糖、白细胞下降 (P<0.05),空腹胰岛素、OGTT 1h 血糖差异无统计学意义 (P > 0.05),实验组孕妇妊娠期糖尿病等多种妊娠结局的发生率低于对照组 (P<0.05)。结论:孕期补充维生素 D 可降低白细胞、改善糖代谢指标,减少妊娠期糖尿病等好娠结局的发生。

关键词: 25(OH)D3; 糖代谢; 白细胞; 妊娠期糖尿病; 妊娠结局

妊娠期糖尿病 (gestational diabetes mellitus,GDM) 是怀 孕期间首次被诊断或发现不同程度的糖代谢异常。近年 来,随着生活水平不断地提高以及人们饮食结构改变,我国 GDM 发病率呈逐年上升趋势^[2]。研究发现,孕妇血清维生 素 D(vitamin D,VD) 水平影响糖代谢过程,促进 GDM 的发展。 这是因为维生素 D 参与胰岛素的合成、分泌和代谢, 胰岛 素直接和间接影响血糖水平, 在糖脂代谢过程中发挥重要作 用^[3]。25- 羟基维生素 D, [25(OH)D,] 是 VD 在人体内主要的 存在形式,是评估 VD 水平的常用指标 [4]。妊娠期 VD 缺乏 的患病率与全球 GDM 的高发病率密切相关 [5]。此外,有研 究表明 GDM 是持续存在低度炎症状态的一种疾病,炎症因 子可通过多种作用机制加重胰岛素抵抗进而促进 GDM 的发 生,其中反映全身炎性疾病的主要标志物是白细胞数 (white blood cell,WBC)^{[6],[7]}。然而,大多数研究仅关注 25(OH)D,与 GDM 的单一关联,综合考察其对糖代谢指标、炎症指标(如 WBC) 及多种妊娠结局影响的干预性研究尚不充分。本研 究旨在探讨孕期补充维生素 D 与糖代谢指标、白细胞水平、 妊娠期糖尿病等多种妊娠结局的相关性。

1 资料与方法

1.1 一般材料

纳入并记录 2022 年 12 月至 2024 年 5 月在我院定期产 检并分娩的孕妇共 300 人,采用计算机生成的随机数字表分 为对照组(150 例)和实验组(150 例)。纳入标准:①在合肥市第一人民医院定期产检并分娩;②单胎妊娠与自然受孕;③孕11-20 周;④年龄在18~40 岁。该研究已通过医学伦理委员会批准。排除标准:①有妊娠期糖尿病史、高血压疾病的孕妇;②患有严重肝肾功能、心功能不全等疾病;③患有恶性肿瘤、血液系统疾病、免疫系统疾病和其他严重器质性疾病或精神疾病;④依从性差,不能规律服用维生素D或失访人员。

1.2 方法

实验组孕妇根据血清 $25(OH)D_3$ 水平补充不同剂量维生素 D3 胶囊,若 $25(OH)D_3$ < 20ng/mL,补充剂量为 2400IU/d,若 $25(OH)D_3$ 为 20 ~ 30ng/ml,补充剂量为 1600IU/d,若 $25(OH)D_3$ > 30ng/ml,补充剂量为 800IU/d,均持续服用 8 周,对照组孕妇常规产检。指导孕妇完成调查问卷,检测两组孕妇干预前后血清 $25(OH)D_3$ 水平,比较两组孕妇相关实验指标及妊娠结局的发生率。

1.3 评价指标

比较两组孕妇人组时的一般资料,如年龄、孕次、产次等。分析两组孕妇孕 24-28 周血清 25(OH)D₃、糖代谢指标、白细胞水平差异,比较两组孕妇的妊娠期糖尿病、妊娠期高血压疾病、早产、胎膜早破等妊娠结局的发生率。

1.4 统计学方法

采用 SPSS 29.0 统计软件。一般计量资料以($\overline{\chi}$ ± s)表示,组间比较采用 t 检验。计数资料以 n 或 % 表示,组间比较采用 χ^2 检验。采用 Logistic 回归分析评价 GDM 的影响因素。以上数据 P < 0.05 为差异有统计学意义。

2 结果

2.1 两组孕妇一般计量资料比较

在干预前(孕11-20周),对照组与实验组孕妇的年龄、 孕周、孕前 BMI、孕次、产次、空腹血糖、血清 25(OH) D₃、WBC 差异均无统计学意义(P>0.05),见表 1。

表 1 两组孕妇入组时的一般资料比较($\frac{1}{\chi} \pm s$)

	实验组	对照组	t	P值
年龄(岁)	29.56 ± 4.42	29.87 ± 3.80	-0.647	0.518
孕周(周)	15.04 ± 2.42	15.30 ± 2.52	-0.902	0.368
孕前 BMI(kg/m²)	21.71 ± 3.02	21.65 ± 2.73	0.182	0.856
孕次(次)	3.03 ± 1.20	3.10 ± 1.09	-0.553	0.581
产次(次)	0.57 ± 0.60	0.55 ± 0.59	0.196	0.845
空腹血糖 (mmol/L)	4.51 ± 0.39	4.45 ± 0.43	1.243	0.215
$25(OH)D_3$ (ng/ml)	14.21 ± 3.74	14.93 ± 7.15	-1.099	0.273
WBC (10 ⁹ /L)	8.14 ± 1.79	8.11 ± 1.83	0.152	0.879

2.2 孕中期相关实验指标比较

与对照组相比,干预后(孕24-28周)实验组孕妇血清25(OH)D₃水平升高(P<0.05),OGTT空腹血糖和2h血糖、WBC水平下降(P<0.05),而空腹胰岛素、OGTT 1h血糖水平差异无统计学意义(P>0.05),见表2。

表 2 孕 24-28 周相关实验指标比较($\overline{\chi}$ ± s)

	实验组	对照组	t	P值
25(OH)D3 (ng/ml)	27.71 ± 10.93	15.49 ± 7.35	11.362	<0.001
OGTT 空腹血糖(mmol/L)	4.15 ± 0.22	4.31 ± 0.37	-4.485	< 0.001
OGTT 1h 血糖(mmol/L)	7.62 ± 1.89	7.28 ± 1.69	1.62	0.106
OGTT 2h 血糖(mmol/L)	6.22 ± 1.29	6.56 ± 1.32	2.296	0.022
空腹胰岛素(μ IU/ml)	8.17 ± 5.00	7.58 ± 3.24	1.229	0.22
血白细胞 WBC(109/L)	8.69 ± 2.20	9.29 ± 1.93	-2.516	0.012

2.3 两组孕妇妊娠结局比较

与对照组相比,实验组孕妇的妊娠期糖尿病、妊娠期高血压疾病、胎膜早破、早产、低出生体重儿、剖宫产的发生率降低且有统计学意义(P<0.05),而胎儿窘迫、胎盘早剥、羊水粪染、巨大儿、新生儿黄疸的发生率差异和一分钟Apgar评分、五分钟Apgar评分的差异无统计学意义(P>0.05),见表 3。

表 3 两组孕妇的妊娠结局比较 [n(%)/(±s)]

妊娠结局	实验组	对照组	/t	P值
妊娠期糖尿病	16(10.7)	29(19.3)	4.418	0.036
妊娠期高血压疾病	4(2.7)	12(8.0)	4.225	0.040
胎盘早剥	3(2.0)	2(1.3)	0.203	0.652
胎膜早破	22(14.7)	36(24)	4.189	0.041
早产	2(1.3)	9(6.0)	4.624	0.032
剖宫产	40(26.7)	57(38.0)	4.403	0.036
羊水粪染	25(16.7)	24(16.0)	0.024	0.876
胎儿窘迫	6(4.0)	7(4.7)	0.080	0.777
巨大儿	9(6.0)	11(7.3)	0.214	0.643
低出生体重儿	2(1.3)	10(6.7)	5.556	0.018
新生儿黄疸	22(14.7)	25(16.7)	0.227	0.634
一分钟 Apgar 评分 (分)	9.89 ± 0.48	9.76 ± 1.14	1.321	0.187
五分钟 Apgar 评分 (分)	9.96 ± 0.35	9.91 ± 0.62	0.924	0.356

2.4 GDM 的多因素 Logistic 回归分析

本次研究显示,补充维生素 D 是 GDM 的独立保护因素 (P<0.05),年龄、产次、孕前 BMI 是 GDM 的独立危险因素 (P<0.05),孕次对 GDM 的发生无显著性 (P>0.05),见表 4。

表 4 GDM 的多因素 Logistic 回归分析

相关因素	回归系数	标准误差	Wald 值	值	CI	值
年龄	0.113	0.048	5.613	1.120	1.020~1.230	0.018
孕次	-0.193	0.157	1.513	0.824	0.605~1.122	0.219
产次	0.776	0.345	5.051	2.173	1.104~4.277	0.025
孕前 BMI	0.106	0.048	4.764	1.111	1.011~1.222	0.029
补充 VD	-0.812	0.292	7.738	0.444	0.250~0.787	0.005

3 讨论

GDM 已成为一种新的全球流行病,一项流行病学调查结果显示我国 GDM 的发病率为 17.5%[8]。维生素 D 的作用不仅影响钙稳态和骨骼健康,还参与广泛的生理过程,包括细胞增殖、分化、凋亡和免疫调节,炎症途径的修饰以及基因组稳定功能的维持^[9]。维生素 D 可作为类激素样物质的受体,从而发挥刺激胰岛素分泌的作用^[10]。本次研究显示孕期补充维生素 D 可提高血清 25(OH)D₃ 水平 (P<0.05),相比于对照组,实验组 OGTT 空腹血糖、2 小时血糖降低(P<0.05),GDM 的发生率下降(P<0.05)。这也进一步证实维生素 D 可能通过影响胰岛素的含量和代谢,间接参与糖代谢过程,进而促进 GDM 的发生和进展。本地区的另一研究也佐证了此次研究结论 [11]。

此外,目前普遍认为β细胞功能障碍和胰岛素抵抗是 GDM 发生的主要原因,而炎症因子可通过多种作用机制加重胰岛素抵抗,其中反映全身炎性疾病的主要标志物是

WBC。有研究表明,WBC 升高是产生胰岛素抵抗的危险因素,且两者呈明显正相关,这可能除了与细胞因子如白细胞介素 -6、肿瘤坏死因子等激动因子分化和激活 WBC,加重胰岛素抵抗有关外,还可能与机体炎性反应,免疫系统活化,导致 WBC 升高,进而引起细胞因子增多,从而降低胰岛素敏感性有关 [6][7]。本研究结果显示,干预前两组白细胞水平差异无统计学意义(P>0.05),干预后实验组白细胞较观察组降低且有统计学意义(P<0.05)。有研究表明 [12] 维生素 D水平与白细胞呈负相关,这可能与 25- 羟维生素 D水平降低导致其对机体免疫细胞的调节能力下降有关。而炎症反应可促进 GDM 发生,以此推测补充维生素 D 可影响炎症途径,进而减少 GDM 的发生。对 GDM 进行 Logistic 多因素回归分析发现,孕期补充维生素 D 可降低 GDM 的发生率。

除妊娠期糖尿病外,有研究表明维生素 D 缺乏可能导致其它妊娠结局,如妊娠期高血压疾病、早产、胎膜早破、胎儿窘迫、巨大儿、羊水粪染、产后出血等,威胁母亲及其婴儿的健康。胎盘和蜕膜中维生素 D 受体及其代谢酶的表达增加,表明这种营养素可能影响妊娠及分娩结局,甚至与新生儿远期并发症有关。越来越多的证据表明,维生素 D 对胎儿正常发育和孕产妇健康的重要 [13]。本研究显示实验组孕妇的妊娠期糖尿病、妊娠期高血压疾病、胎膜早破、早产、低出生体重儿、剖宫产的发生率降低 (P<0.05),而胎儿窘迫、胎盘早剥、羊水粪染、巨大儿、新生儿黄疸的发生率和一分钟 Apgar 评分、五分钟 Apgar 评分的差异无统计学意义 (P>0.05)。

综上所述,孕期补充维生素 D 可提高孕妇血清 25(OH) D3 浓度,抑制炎症反应,改善糖代谢指标,进而降低 GDM 的发生率,并可减少其他不良母婴结局的发生。这为围产期保健及妊娠期糖尿病等妊娠并发症的预防提供了理论依据。但本研究受样本量、时间、地域等因素的限制,数据具有一定局限性,后续可进一步探究。

参考文献:

- [1] 蔡小桃,潘石蕾,李敏仪,等.基于液质联合技术对 妊娠期糖尿病母儿非靶向代谢组学分析及子代相关性研究 [J]. 中国妇产科临床杂志,2024,25(02):150-154.
- [2] 李晓倩,李国芸,孙志刚,等.PAI-1 基因多态性与孕早期糖化血红蛋白交互作用对妊娠期糖尿病发病的影响[J].

实用妇产科杂志 .2023.39(09):700-705.

- [3] Zhang H, Wang S, Tuo L, et al. Relationship between maternal vitamin D levels and adverse outcomes[J]. Nutrients, 2022, 14(20): 4230.
- [4] 骆文龙,赵倩,胡敏,等.妊娠期糖尿病孕妇25-羟维生素 D水平与糖脂代谢及产褥感染的相关性[J].中华医院感染学杂志,2024,34(01):103-107.
- [5] Zhu Y, Li L, Li P. Vitamin D in gestational diabetes: A broadened frontier[J]. Clinica Chimica Acta, 2022, 537: 51–59.
- [6] 李京旸, 张晓丽, 姜敏, 等. 老年2型糖尿病患者 25-(OH) D3、NLR、PLR与糖尿病肾病的相关性研究[J]. 中华中医药杂志, 2023, 38(07): 3478-3482.
- [7] 徐叶芳, 武海荣, 孙振凤.GDM 患者血清 25- 羟维生素 D3 变化及其与炎症因子、血脂指标的相关性研究[J]. 生殖医学杂志, 2020, 29(03):344-348.
- [8] Falcone V, Heinzl F, Itariu B K, et al. Gestational diabetes mellitus in pregnant women with beta-thalassemia minor: A matched case-control study[J]. Journal of Clinical Medicine, 2022, 11(7): 2050.
- [9] Cheng Y, Chen J, Li T, et al. Maternal vitamin D status in early pregnancy and its association with gestational diabetes mellitus in Shanghai: a retrospective cohort study[J]. BMC Pregnancy and Childbirth, 2022, 22(1): 819.
- [10] Dimas A, Politi A, Bargiota A, et al. The gestational effects of maternal bone marker molecules on fetal growth, metabolism and long-term metabolic health: a systematic review[J]. International journal of molecular sciences, 2022, 23(15): 8328.
- [11] 马双双. 维生素 D 补充影响孕母糖稳态和婴幼儿生长及神经发育的 RCT 研究 [D]. 安徽医科大学,2022.
- [12] 刘景彬, 黄伟丽, 陈锐芳.25- 羟维生素 D 联合WBC、NLR、PLR 对孕早期妊娠期糖尿病的预测价值[J]. 中国医药指南,2024,22(04):65-67.
- [13] Athanassiou L, Kostoglou-Athanassiou I, Koutsilieris M, et al. Vitamin D and autoimmune rheumatic diseases[J]. Biomolecules, 2023, 13(4): 709.

作者简介: 崔巧婷(1999—), 女, 汉族, 安徽省合肥市, 硕士, 研究方向为围产医学。