

运用 BIM 的地铁盾构施工信息管理的策略探究

李世太

中铁十二局集团第二工程有限公司 山西 太原 030000

【摘 要】:随着社会经济水平的不断提高,我国的交通技术有了长足进步,地铁建设也在越来越多的城市所广泛运用,以解决城市交通拥堵问题。在地铁施工过程中,由于地质环境的不可预测性及盾构技术操控的复杂,给地铁盾构隧道施工的质量和安全性都带来了很大挑战。在地铁盾构施工过程中,如何采取有效的措施来确保盾构工作的顺利进行,是值得思考的一个重要问题。而利用 BIM 技术进行有效指导,可以有效收集、传送、存储和应用有效信息数据,将隧道信息转为盾构施工智能化技术,可以有效引导盾构施工方避免风险。本文旨在探讨地铁盾构施工过程中有效应用 BIM 技术进行信息化管理的有效策略方式,以期能对地铁盾构施工带来些许借鉴和参考价值。

【关键词】: BIM 技术;信息化管理;策略方式;借鉴参考

引言

目前,我国的城市交通发展与地铁工程的建设息息相关。在进行城市地铁施工过程中,使用最多的是盾构施工法,常用的设备设施是盾构机。由于盾构机在使用过程中噪声较小,又能降低对地面交通的影响,故而在地铁施工建设中运用得比较多。在盾构施工期间,要对施工所产生的庞大的数据和信息进行有效管理,才能确保地铁施工安全。在盾构施工过程当中,利用 BIM 技术与之有机结合,能更好地进行信息管理,它是减少施工成本、推进施工进度的关键因子。因此,对 BIM 技术在地铁盾构施工过程当中的应用方式方法进行探索研究,对盾构施工中的工程质量和施工管理等都具有十分重要的意义。

一、BIM 技术在地铁施工中的运用状况。

现如今,BIM 技术在地铁施工中运用十分广泛。在盾构施工中的运用主要有三维模拟协调、场地规划、量化统计、动画模拟、成本控制等方面。我国的 BIM 技术由于应用较晚,从理论到实践都还不太完善,尚处于探索研究阶段。随着 BIM 技术的不断发展,也逐步应用到我国的地铁建设中。有的施工单位将 BIM 技术应用到地铁盾构施工中对邻近建筑物的加固、地下土层固化方面,利用数值化模拟技术来解决地下土层的沉降等问题。有的单位将 BIM 技术运用到地铁车站施工中的三维模拟可视化、碰撞、施工进度、设备及监控量测等方面,对地铁的施工过程实现了动态化有效管理。还有专家提出将 BIM 技术应用到地铁工程的预测、图纸设计、工程施工、竣工管理及后期维护等建设全过程,并且要依照地铁施工特点,进行 BIM 信息集成化管理。这些都是 BIM 技术在地铁施工过程中的有效运用,为地铁工程的高效施工、降低成本及安全性方面进行了探索及实践。

二、BIM 技术的主要特点。

1、BIM 技术的可视性。

现阶段,我国的地铁工程建设发展迅速,在规模和数量上都呈快速上升趋势。可是,由于地下工程的不可视及地质条件的不可预测性,如果只是靠传统的预测方法,是无法达到地铁建设预期效果的。所以,有效应用 BIM 技术的可视效果,可以将施主方设计专业人员的建设构想通过三维图像的方法呈现,能让设计人员对地铁施工整体工程进行直观参考,可以有效地规避风险,进行高效设计。

2、BIM 技术的协调性。

如果在地铁盾构施工工程进行期间,管理人员或技术人员发现存在某些方面的缺陷,一定要及时跟领导汇报,并组织相关部门进行商讨,选择科学的处理措施。如果将 BIM 技术应到地铁盾构施工中,无疑可以迅速寻找到不足,并且及时给予相应处理措施,及时改正不足,有效规避了地铁盾构施工中的风险,有效提升施工质量和工作效率。

3、模拟性。

在地铁盾构施工设计环节中,可以有效利用 BIM 技术,对盾构施工的一些施工工序进行模拟。譬如,在施工期间,利用 BIM 四维模拟技术向设计人员进行信息传送,可以让设计人员将方案设计得更全面。而且,地铁盾构施工中,还能进行 BIM 五维技术的应用,让地铁施工的投入成本更加科学合理,有效实现对地铁盾构施工工程的管控。

二、地铁盾构法施工的基础原理

盾构机在地铁工程中的广泛应用,能够有效提升地铁工程的作业质量。盾构机械的组成主要包含注浆系统、支撑稳定系统以及挖掘系统。在盾构机械展开挖掘工作期间,对挖

掘的孔洞进行稳定与支撑,是其最为高效的功能,可以对挖掘后的孔洞展开高效维护。在盾构机械的尾部位置,可以将注浆系统加以运用,从而在隧道的围岩处展开注浆,确保围岩能够具备更高的稳定性能,将施工期间的安全性大幅度提升,促使地铁工程中的支撑与挖掘工作能够发挥出真正的用途⁽¹⁾。盾构机械外部的钢壳非常坚硬,因此在对地铁工程展开挖掘工作期间,不会过度损害到盾构机械。而盾构机械在运作时,其尾部位置也会处于工作的状态,整体盾构机的运作状况是前部展开挖掘、后部展开注浆,能够同期开展。而在注浆工作开展期间,需要对盾构机械的运作严格管控,确保其不会影响四周的涂层,从而确保地铁在日后的运行中能够更加稳定并且安全。

三、BIM 技术在地铁盾构施工工程中的有效运用策略。

1、在地铁盾构技术前期准备工作中的有效应用。

在地铁盾构施工工程前期,一定要将相关的准备工作做 好。第一,要利用 BIM 技术与工程实际有机结合的方式,对 施工现场进行科学布置。为了有效保证调运管片及地下土运 送工作的顺利开展,则要利用 BIM 技术加强管片进场、集土 坑及管片堆场等工作。利用 BIM 技术加强管片堆场及集土坑 面积的合理设计,合理划分拦浆场所及生活办公区域。由于 地铁工程所独有的特性,在盾构施工前,一定要将充分准备 有关申报材料,并办理好特殊工种证。同时,还要利用 BIM 技术有效规划出土土路线及材料进场路线,以免引起工作无 序混乱。还要将 BIM 技术所给出的测量结果及时报给监理及 业主。在出洞方案出来后,还要考虑出洞后的管片偏移量, 是不是符合我国的相关规定及标准。另外,还需要对施工主 材料进行精确的复测与核验,对机器设施要认真地进行审核。 还要对影响到地铁施工的地下管线、埋兴及具体位置进行仔 细核查,并与各种建筑物进行核查,要尽最大可能地利用 BIM 技术规避风险, 有效进行地铁盾构技术的施工。

2、利用 BIM 技术有效进行关键系统参数的远程监控工作。

在地铁盾构施工过程中,地铁施工工程的管理人员可以

利用 BIM 技术进行快捷的查询,并且可以找出盾构机器设施的有关参数进行实时查询,有效实行对盾构施工工程的远程管理和监控工作。

3、BIM 技术在盾构工程施工材料消耗管理中的有效运用。

在地铁盾构工程施工管理中,如果利用 BIM 技术对施工材料消耗进行有效管理,则能全面统计盾构环间的主施工材料消耗情况,减少数量差异过大,节约工程时间和避免浪费。在地铁盾构施工过程中,材料的用量十分关键,它会影响到施工投入的资金成本,也是盾构施工安全性与质量管控的前提条件。利用 BIM 技术可以有效分析材料的消耗情况,并以图形或电子表格的形式呈现,可能辅助施工采购人员进行有效采购。让采购人员依据 BIM 技术所提供的资料进行科学规划,合理安排,能有效节约成本,提高施工工作效率。同时,还将将这些资料作为事故发生处理时进行回顾研究的重要依据。

4、BIM 技术在地铁盾构施工时间统计中的有效运用。

利用 BIM 技术,能有效划分盾构机单循环管片施工时间,主要分为掘进、拼装及停工三种状况。在对地铁盾构施工期间这三种状问进行统计时,要掌握它在地铁盾构施工工程时间中所占比重,并且利用扇形图、直方图等方式呈现。这些资料能让施工管理人员掌握地铁盾构施工工程的实际现状,并进行有效分析,最后再进行科学合理的宏观调控和统筹安排。

结语

BIM 技术的出现,有效提升了地铁盾构施工工程的信息 化管理,将 BIM 技术有效运用到地铁盾构施工工程,将地下 时空空间位置的地质参数、结构参数和盾构机参数进行关联, 有效实现了数据的可视化管理。而在盾构施工工程中将 BIM 技术与之有效结合,保障了地铁盾构施工的数字化、信息化 与智能化,大力推进地铁施工工程迈向高效、稳健的良性发 展方向。并且未来将进一步对 BIM 技术引进地铁盾构施工进 行探索和研究,为地铁盾构施工工程作出更大贡献。

参考文献:

- [1] 田五好.基于 BIM 的地铁盾构施工信息管理[J].工程建设与设计,2019(8): 230-231.
- [2] 魏林春,许恒诚,钟宇.基于 BIM 的地铁盾构施工信息管理[J].土木工程与管理学报,2018,35(6):143-148,162.