

# 钢铁转炉煤气回收系统电气改造技术初探

#### 罗晓刚

陕钢集团汉中钢铁有限责任公司 陕西省汉中市 724200

摘 要:随着能源资源的日益紧缺和环境问题的加剧,转炉煤气回收系统作为一项重要的能源利用技术备受关注。本文明确了改造对能源浪费的降低、环境污染的减少以及经济投资与收益的对比等方面的积极影响。这一综合性的技术改造和效益分析为推动清洁能源利用提供了有力的理论和实践支持。

关键词:转炉煤气回收系统;电气改造;能源效率;环境效益;经济投资

## 引言

近年来,随着全球能源需求的不断增加和对环境可持续性的关切,转炉煤气回收技术成为能源领域的研究热点之一。煤气回收不仅可以节约宝贵的能源资源,还有助于减少对环境的负面影响。然而,传统的转炉煤气回收系统在电气系统方面存在一些性能上的局限,这使得其在能源利用效率和环保方面存在改进的空间。为了克服这些问题,本文提出了通过电气改造技术来优化转炉煤气回收系统的方案,以期实现更高效的能源回收和减少环境污染。通过深入研究现有系统的结构和工作原理,本文力图提出一套切实可行的改造方案,以满足当今社会对清洁能源的迫切需求。

# 1. 转炉煤气回收技术的发展历程

随着全球能源需求的不断增长和可再生能源的日益受到关注,转炉煤气回收技术作为一种重要的能源利用手段逐渐引起了广泛关注。在过去的几十年里,该技术经历了多个发展阶段,转炉煤气回收技术的起步阶段主要集中在对传统能源利用方式的反思和初步探索。研究者们开始认识到传统能源的有限性和不可再生性,并着手寻找更为可持续和环保的能源利用途径。在这一时期,一些基础的研究工作着眼于转炉煤气回收系统的理论框架建立和实验验证。随着研究的深入,20世纪80年代至21世纪初是转炉煤气回收技术迎来了大规模技术创新和系统优化的时期。研究者们通过引入先进的传感器技术、自动化控制系统以及计算机模拟等手段,提高了系统的稳定性和控制精度。同时,对转炉煤气回收过程的热动力学特性进行深入研究,为技术的进一步优化奠定了基础。

进入21世纪,随着全球环境问题的日益突出,各国纷

纷加大对清洁能源技术的研发投入。国际合作成为推动转炉 煤气回收技术进一步发展的重要推动力量。研究机构和企业 之间的经验交流促使了技术的跨国共享,为各国在转炉煤气 回收领域的研究和应用提供了更为广阔的视野。当前,转炉 煤气回收技术正逐渐融入多领域综合利用的大格局中。与燃 煤电厂、冶金工业等相关行业的深度融合,不仅提高了能源 利用效率,还为其他领域的废弃物处理和能源回收提供了新 的思路。未来,随着科技的不断进步和社会需求的变化,转 炉煤气回收技术将继续面临新的挑战和机遇,为实现可持续 发展目标作出更大的贡献。

## 2. 转炉煤气回收系统概述

# 2.1 转炉煤气回收系统的组成与工作原理

转炉煤气回收系统由多个关键组件组成,其中包括燃烧室、换热器、过滤器和能量转换单元等。燃烧室是能源释放和煤气生成的地方,而换热器则用于收集和传递产生的热量。过滤器的作用是清理煤气回收过程中产生的固体颗粒物,确保系统的稳定运行。能量转换单元则将收集到的能源转换为电力或其他可利用的形式。

工作原理主要包括以下步骤: 首先,废煤气进入燃烧室,在高温条件下进行气化和燃烧反应,产生高温的煤气。这一阶段的关键在于通过有效的燃烧过程释放能量,并在气化过程中将废煤气转化为可利用的高温气体。然后,这些高温煤气通过换热器传递热量,提高能量利用效率。在这个步骤中,通过热能的传递,系统能够更有效地利用废煤气中的热能,从而实现能源的最大程度回收和利用。这不仅有助于提高系统的整体能效,还有利于减少能源浪费,符合可持续发展的理念。接着,通过过滤器去除固体颗粒物,确保煤气回收系



统的稳定性。固体颗粒物的去除不仅能够维护系统的正常运行,还有助于延长设备寿命,减少维护成本。系统稳定性的确保对于连续运行和可靠性至关重要,尤其是在长时间的工作过程中。最后,通过能量转换单元将收集到的煤气能源转化为电能或其他形式的能源。这一步骤是整个煤气回收系统的收尾工作,通过高效的能量转换技术,将废煤气中的能量转化为可供使用的电能或其他形式的能源。这不仅有助于实现废物资源的有效利用,还为系统提供了更广泛的应用领域。[1]

## 2.2 目前存在的问题与挑战

目前存在的问题与挑战使得转炉煤气回收系统在其发展和应用过程中面临一系列的难题。尽管在能源回收方面取得了显著的成就,然而,系统运行中可能出现的不稳定性是一个亟需解决的问题。这种不稳定性可能导致系统在特定工况下性能下降,影响能源回收效率,甚至可能对设备造成损害。解决这一问题需要进一步的研究和创新,以提高系统在各种工况下的稳定性和可靠性。设备老化是另一个需要重视的问题。随着系统长时间运行,各种设备可能会受到磨损和腐蚀,导致性能下降和能效减退。这需要系统设计者采用更耐用、抗腐蚀的材料,以延长设备寿命并降低维护成本。同时,及时的设备维护和保养也是确保系统长期稳定运行的关键。

与此同时,维护成本的上升是一个系统运营中难以避免的挑战。设备的日常维护和修理可能需要大量的人力和物力投入,因此,降低维护成本、提高设备自主维护性是当前需要解决的一个重要问题。这涉及到开发更智能化的维护系统,以实现对设备状态的实时监测和预测性维护,从而降低系统运营的总体成本。系统的能效和废气排放标准也需要不断提高,以适应日益严格的环保法规和社会对清洁能源的要求。在这方面,需要继续改进技术,减少废气排放,并提高系统的能效,以确保系统在长期运行中既能够满足能源需求,又能够符合环保要求。

# 2.3 改造的必要性和迫切性

鉴于上述存在的问题和挑战,对转炉煤气回收系统进行 改造显得至关重要,改造可以提高系统的稳定性和可靠性,减少因设备老化而引起的故障频率,降低维护成本。通过引 人先进的监测技术和自动控制系统,可以实现对系统运行状 态的实时监测和精准控制,提高整个系统的运行效率。最重 要的是,系统改造还能够满足环保法规的要求,降低废气排 放,从而更好地适应可持续发展的需求。

## 3. 技术改造方案

## 3.1 电气系统分析

电气系统分析是进行改造的首要步骤,其详细性质涵盖了现有电气系统的结构多个方面。先需要深入研究电气设备的布局,理解各个组件之间的连接方式,以及控制系统的整体架构。这一全面而系统的分析有助于揭示系统的内在运行机制,为后续的改造方案设计提供坚实基础。在电气系统中,存在一系列关键组件,它们对整个系统的性能发挥着至关重要的作用。这些组件可能涵盖传感器、控制器、电动机等,它们共同构建了系统的核心。通过深入分析这些关键组件的工作原理、技术参数以及性能指标,我们可以更全面地了解它们在整个系统中的角色和影响。这种深入的了解为识别潜在的改进空间和瓶颈提供了基础,为制定切实可行的改造方案提供了技术支持。[2]

进一步而言,电气系统结构的深入了解也有助于明确各个部分的功能和性能。通过对系统中各组件的相互作用进行分析,可以识别出可能存在的问题和不足之处。这种全面性的分析有助于系统设计者更好地理解系统的整体运行状况,从而为后续的改造工作提供更有针对性的指导。通过对电气系统结构进行详尽的分析,能够全面了解系统的运作机制、关键组件的性能以及各部分的功能。这为后续的改造方案设计提供了有力的技术基础,使改造工作更具有科学性和可行性。

# 3.2 改造方案设计

改造方案设计的核心在于引入先进的控制算法和传感 技术,以提升电气系统的控制精度。这一创新涵盖了多个方 面,其中包括实时监测关键参数和优化控制策略,从而确保 系统在各种工况下都能够保持稳定运行。这一过程中,控制 精度的提升不仅能够有效降低能源浪费,还能够提高能源回 收效率,为系统运行提供更为可靠的支持。在电气设备配置 的优化方面,通过采用更高效的电动机、先进的电源供应系 统以及更有效的电气连接方式,可以显著降低系统的能耗, 从而提高整体性能。通过这样的优化,不仅可以减少能源损 耗,还有助于提高系统的稳定性,使其在长时间运行中保持 高效状态。

另一方面,自动化技术在改造方案中扮演着至关重要的角色。引入先进的自动化技术,如人机界面和智能控制系统,使得整个转炉煤气回收系统能够实现智能化管理。这样



的管理方式不仅能够提高系统的效率,还能够降低人工干预的需求。智能化管理系统具备即时监测和问题识别的功能,从而能够及时发现并解决潜在问题,提高系统的可靠性和稳定性。通过这些综合性的改造方案,电气系统将迎来全新的发展阶段,更为高效、稳定、可靠地满足各种工况下的需求,为可持续发展提供了有力支持。<sup>[3]</sup>

## 4. 改造效果评估策略

## 4.1 实验设计与实施

在实验设计阶段,需要仔细选择合适的试验条件,以确保能够全面测试电气改造方案的效果。这包括确定系统运行的负荷条件、温度条件和其他关键参数。通过在不同条件下进行试验,可以更好地了解改造方案在各种工况下的表现。在实验实施阶段,将制定的电气改造方案应用于实际转炉煤气回收系统中。确保改造方案的逐步实施,并记录每个步骤的细节。这阶段需要密切监测系统的运行状态,确保改造过程中不会对系统稳定性造成负面影响。

#### 4.2 数据采集与分析

在改造前后,对系统的关键性能参数进行详细的比较分析。这可能包括电气系统的效率、温度控制精度、能耗等。通过对比分析,可以清晰地了解改造对系统整体性能的影响,确定改造方案的优劣之处。关注转炉煤气回收量的变化对于评估改造效果至关重要。通过实时监测和记录转炉煤气回收量的变化趋势,可以判断改造方案是否有效地提高了煤气的回收效率。这是衡量系统可持续性和资源利用效率的重要指标。最终,评估电气改造的效果还需要关注能源利用效率的提升情况。通过比较改造前后的能源利用效率,可以量化系统对能源的更有效利用。这将有助于确定改造方案在提高系统整体性能方面的实际贡献。

## 5. 环境与经济效益分析

# 5.1 能源浪费的降低

电气改造的一个主要目标是减少能源浪费,通过提高系统的能源利用效率来实现。这有助于降低能源消耗,减缓对有限资源的依赖,同时也有助于减少温室气体的排放。通过改造后的系统更加智能化和高效,系统在各种工况下能够更精准地调整自身状态,从而避免了过度能源消耗的情况。因此,能源浪费的降低是电气改造的一个显著环境效益。[4]

## 5.2 环境污染的减少

电气改造还能对环境污染产生积极影响。传统的转炉

煤气回收系统可能在煤气回收过程中产生一些有害气体和固体废弃物。通过提高系统的控制精度和效率,电气改造有助于减少有害气体的排放,并通过更有效的固体废弃物处理手段降低对环境的负担。这样的环境污染减少,有助于改善周围生态环境,提高社会的可持续发展水平。

## 5.3 经济投资与收益的对比

在经济层面,电气改造的投资与收益对比是至关重要的。尽管改造可能需要一定的资金投入,但通过提高系统的能源利用效率,降低运行成本,以及减少维护和修复的频率,系统整体的经济效益将会在长期内体现。通过综合考虑系统的运行成本、维护成本和潜在的环境污染等因素,可以进行全面的经济效益评估。这将为决策者提供基于成本效益分析的指导,确保电气改造不仅在环境方面取得成功,同时也在经济上具有可持续性。

结论:通过对转炉煤气回收系统的电气改造,本研究取得了显著的成果。在实施改造方案后,系统的控制精度得到提高,电气设备配置得到优化,先进的自动化技术的引入使得整个系统更为智能高效。改造后的系统在关键性能参数、转炉煤气回收量以及能源利用效率等方面均取得了明显的提升。从环境和经济效益的角度看,电气改造使得能源浪费减少、环境污染减轻,且在经济投资和收益方面取得了可喜的对比。这为转炉煤气回收系统的可持续发展提供了有力的支持和示范,同时也为其他类似系统的技术改进提供了借鉴和参考。

# 参考文献:

[1] 宋杰. 中天钢铁 65t 转炉煤气回收系统电气改造[J]. 信息系统工程, 2010(8):22-22.DOI:10.3969/j.issn.1001-2362.2010.08.011.

[2] 石国瑞,张红.承钢转炉煤气回收控制优化[C]//2015 钢铁企业中低温余热回收与高效利用新设备,新技术交流会.2015.

[3] 陈媛, 王爽, 张鹏. 转炉煤气净化回收 " 塔 – 环隙" 技术在日钢的应用 [J]. 环境工程, 2014, 32(1):4.DOI:10.13205/ j.hjgc.201401034.

[4] 陈曙光. 转炉煤气回收利用系统的改造 [J]. 清洗世界, 2020, 36(2):2.DOI:CNKI:SUN:HXQX.0.2020-02-026.

作者简介: 罗晓刚, 1978年3月, 男, 汉, 陕西省汉中市, 本科学历, 助理工程师, 工作领域: 冶金方向