

电力工程施工安全管理中的挑战与对策

王 真

山东电力工程咨询院有限公司 山东省济南 250013

摘 要:当前,安全管理制度不完善、人员安全意识与素质不足、施工设备与工具管理问题以及复杂的施工环境等,为应对这些挑战,应完善安全管理制度体系,明确职责并强化执行监督;提升人员安全意识与素质,通过系统培训增强技能水平;加强施工设备与工具管理,确保设备维护更新和安全工具标准化管控;优化施工环境管理,构建自然灾害预防体系和改善施工现场环境。这些措施旨在提升电力工程施工安全管理水平,确保工程安全高效进行。给电力工程施工安全管理带来诸多挑战。

关键词: 电力工程; 施工安全; 挑战与对策

引言

电力工程对社会经济发展意义非凡,随着电力需求攀升,其建设规模不断扩大。但施工过程复杂,若管理不善会引发严重后果。所以,剖析挑战并探寻对策,对电力工程建设和行业发展至关重要。

1. 电力工程施工安全管理概述

1.1 电力工程施工特点

电力工程施工具有显著的特殊性,其中高空作业是其 突出特点之一,施工人员需在杆塔、架空线路等高处进行设 备安装、线路架设与维护等工作,稍有不慎便可能因坠落引 发严重安全事故;带电作业更是电力工程施工的典型特征, 工作人员在不停电的情况下对电力设备进行检修、改造等操 作,由于作业环境中存在高电压,一旦防护措施不到位或 操作失误,极易发生触电危险。同时,电力工程施工还涉 及多工种协同作业、复杂的电气系统安装与调试等,这些 因素相互交织,使得电力工程施工不仅面临高空坠落、触 电等直接风险,还存在机械伤害、火灾爆炸等潜在危险, 整体呈现出高度的复杂性和危险性,这对施工安全管理提出 了极高的要求。

1.2 安全管理重要性

从保障人员安全方面考虑,电力工程施工通常在高空、带电、环境复杂的情况下进行,完善的安全管理有利于规范操作、配备防护措施等,可以减少事故发生的几率,保护施工人员的人身安全,避免家庭悲剧的发生;从保证工程进度方面考虑,安全管理有利于避免安全事故的出现而进行停工

整顿、设备损坏维修等情况,有利于避免施工进度的拖延,可以减少安全事故的出现而耽误进度的情况,科学预判,做好风险防范,能够使施工有序推进,能够使工程按计划推进,使电力工程如期交付,满足社会的用电需求;从维护企业形象方面考虑,安全管理的成果有利于维护企业形象,安全事故频发会引发社会舆论关注,引发舆论风波,可能会引起法律纠纷,承担经济赔偿,影响企业公信力,损害企业竞争力;反之良好的安全管理可以树立企业的负责任的形象,可以得到合作伙伴和社会大众的信任。

1.3 安全管理目标与原则

其具体目标以系统性、可量化为导向,首要目标是最大限度降低事故发生率,通过建立健全风险防控体系,将触电、高空坠落、机械伤害等事故风险控制在最低水平,确保施工人员生命安全和身体健康;同时,确保电力工程施工全周期无重大安全责任事故发生,实现"零死亡、零重伤"的安全底线目标,确保电力工程施工全周期安全生产安全,确保安全生产安全。此外,确保电力工程按时交付、稳定运行,通过强化安全管理,避免因安全事故造成工期延误和经济损失。在管理原则层面,坚持"安全第一"的核心地位,任何施工方案和决策都需要以安全为前提;贯彻"预防为主"的原则,通过风险预控、隐患排查、安全教育等手段,把安全管理关口前移,把潜在的风险从源头上消除掉;秉持"综合治理"理念,统筹技术、管理、制度等多维度措施,构建全员参与、全过程覆盖、全方位管控的安全管理格局;落实"责任到人"原则,明确各级管理人员、技术人员及施工人员的

安全职责,形成权责清晰、协同联动的安全责任体系[1]。

2. 电力工程施工安全管理面临的挑战

2.1 安全管理制度不完善

电力工程施工安全管理进程中,安全管理制度不完善成 为制约安全水平提升的关键挑战。部分电力工程存在显著的 制度缺失与漏洞问题,例如在跨区域高压输电线路工程中, 针对复杂地形条件下高空作业的特殊防护要求, 缺乏细化的 安全操作规范, 未明确不同坡度、风速等环境因素下的作业 限制标准,导致施工人员在危险环境下作业时无据可依,增 大了事故风险:又如在一些城市电网改造工程中,对临时用 电设备的检查维护制度存在空白,致使部分老旧设备带故障 运行, 埋下安全隐患。制度执行不力的情况同样突出, 部分 施工企业将安全管理制度束之高阁,存在严重的形式主义, 仅停留在文件下发、会议传达层面,未真正落实到施工一线, 例如安全检查工作浮于表面,对检查中发现的问题未及时督 促整改;同时,监督机制缺位,缺乏独立有效的安全监督部 门对制度执行情况进行全程跟踪与考核,导致违规操作行为 难以被及时纠正,安全管理制度难以发挥应有的约束与保障 作用,极大削弱了电力工程施工安全管理效能[2]。

2.2 人员安全意识与素质问题

部分施工人员安全意识淡薄,为安全事故埋下隐患,例如在电力电缆敷设工程中,施工人员为图方便,擅自拆除临时设置的安全防护栏,在未采取任何防护措施的情况下进入深基坑作业,最终因边坡土方坍塌导致人员伤亡;还有施工人员在高空作业时不规范佩戴安全带,抱有侥幸心理,增加了坠落风险。与此同时,专业技能不足也严重威胁施工安全,由于电力工程涉及众多专业技术,电气设备安装调试、高压线路架设等,部分施工人员未经过系统培训,对复杂的施工工艺和技术要求掌握不扎实,容易出现操作失误。例如,在变压器安装过程中,因施工人员对绕组接线原理理解不透,导致接线错误,不仅影响设备正常运行,还可能引发短路等严重安全事故,对整个电力工程的施工安全与质量造成负面影响。

2.3 施工设备与工具管理问题

施工设备与工具管理在电力工程施工安全管理中存在诸多问题。一方面,设备老化故障无法忽视,电力工程施工设备长期高强度运行,缺乏定期的维修保养与更新换代,设备的机械性能、电气性能会逐渐下降,零部件磨损、线路老

化等问题会逐步累积,易出现机械故障、漏电等安全隐患;另一方面,安全工具管理不规范,部分施工单位在安全工具的采购、验收环节把关不严,导致进入施工现场的安全工具质量参差不齐,不能达到安全防护要求;安全工具的使用和存放环节也缺少规范管理,导致安全工具随意堆放、超期使用,防护性能下降甚至失效,施工人员在施工过程中存在危险,降低施工安全的保障能力^[3]。

2.4 施工环境复杂带来的挑战

电力工程施工环境的复杂性对安全管理带来了巨大挑战,恶劣天气和特殊地形是自然环境层面的主要威胁因素。 暴雨、大风、雷电等极端天气不仅会降低施工设备的性能稳定性,还可能引发雷击、洪水等灾害,危及施工人员的生命安全;高山、陡坡、沼泽等地形复杂,给施工机械和人员作业增加了难度,容易引发山体滑坡、崩塌等地质灾害,给施工人员和施工人员带来更大的安全事故几率。而在施工现场环境方面,交叉作业现象普遍存在,多工种、多工序同时进行,不同作业区域之间的相互干扰容易造成人员碰撞、机械伤害等事故;同时,部分施工现场受空间限制,存在场地狭窄、施工设备材料摆放和运输空间不足、人员活动范围受限等问题,不仅影响施工效率,而且可能因操作不便而引发安全事故,这些复杂的环境因素共同对电力工程施工安全管理带来严峻考验,给广大职工群众的生活安全带来了极大的影响。

3. 应对电力工程施工安全管理挑战的对策

3.1 完善安全管理制度体系

完善安全管理制度体系,以系统性思维为引领,从组织架构上明确各部门、人员的职责,以岗位安全责任清单的形式,将安全管理的职责细化到管理层、技术部门、施工班组、一线人员,确保安全管理制度无死角。从制度内容上,针对电力工程高空、带电等作业特性,制定覆盖风险辨识、隐患排查、应急处置等全流程的标准化操作规范,形成项目规划、竣工验收的闭环管理制度;从制度执行与监督上,建立多维保障机制:一方面,通过建立安全目标考核制度,将制度执行情况与绩效考核、奖惩机制挂钩,形成刚性约束;另一方面,通过建立"企业自查、监理巡查、第三方监督"的多层级监督体系,运用信息化手段实现安全管理数据的实时共享与动态监控,对制度执行过程中出现的偏差及时预警、纠正,确保安全管理制度从文本规范转化为实际行动,

切实提高电力工程施工安全管理水平[4]。

3.2 提升人员安全意识与素质

为有效开展电力工程施工安全管理,首先要从提升人 员安全意识和安全素质方面下功夫,这就要求加强安全教育 培训。建立健全针对不同群体制定安全培训的系统化、分层 次培训体系。针对不同群体采用不同培训计划:对管理层加 强安全法律法规和责任意识教育,对技术人员加强风险评估 和方案优化能力的培养, 对一线人员加强基础安全知识和操 作规程的培训。创新培训方式,线上线下相结合,利用 VR 模拟、案例动画等数字化手段还原事故场景。加强培训的直 观性与感染力,通过安全知识竞赛、应急演练等形式,增强 人员的安全意识。在开展技能培训与考核上, 围绕电力工程 施工核心技术需求, 定期开展电气设备安装、高空作业等专 业技能培训,邀请行业专家、技术骨干进行授课,做好技能 培训的专业性和实用性,建立完善的考核机制,将理论知识、 实操技能纳入考核范围,建立持证上岗制度,对考核不合格 人员进行复训,形成"培训—考核—提升"的良性循环,全 面提升施工人员专业技能水平, 筑牢电力工程施工安全的人 力根基。

3.3 加强施工设备与工具管理

应对电力工程施工安全管理的挑战, 要强化施工设备 和工具管理,从设备全生命周期维护和安全工具标准化管控 两方面发力。一是设备维护更新。根据设备使用频率、工况 条件、厂家建议等确定设备预防性维护计划, 定期对设备进 行清洁、润滑、调试、性能检测等,建立设备维护档案记录 运行数据,提前预警并精准处置故障隐患,对老化设备、维 修成本高、存在重大安全隐患的设备及时制定更新方案,运 用新技术、新工艺等引入智能化、安全性能更强的设备,从 源头降低设备运行风险,保障施工安全稳定。二是规范安全 工具管理。健全设备采购、使用、维护全生命周期的管理制 度,严格执行安全工具准入制度,采购环节引入第三方质量 认证机制,保证工具符合国家标准和行业规范,使用环节严 格落实"一人一档、一物一卡"制度,明确使用责任人和使 用规范, 建立定期检测和强制报废机制, 对绝缘工具、防护 用具等工具进行周期性检测,对达到使用寿命、存在质量问 题的工具及时淘汰,避免因安全工具管理不力导致的安全事 故,切实提升电力工程施工的本质安全水平[5]。

3.4 优化施工环境管理

优化施工环境管理是提高电力工程施工安全水平的关 键路径,要从自然环境应对和施工现场环境改善两个维度共 同发力。在应对自然环境方面,要构建"预防-响应-恢复" 全链条管理体系, 既要建立精准的风险预判机制, 利用气象 卫星监测、地质雷达探测等先进技术,结合施工区域历史灾 害数据,提前识别高风险时段和高风险区,制定分级预警机 制: 也要完善应急预案体系, 针对暴雨、大风、雷击等极端 天气以及滑坡、泥石流等地质灾害,明确应急响应流程、人 员疏散路线、设备防护措施和施工暂停标准。加强实战化演 练,保证预案可操作性;加强防护设施建设,对于易受雷击 区域安装智能防雷装置,在边坡、深基坑等危险地段安装自 动化监测系统和稳固防护栏, 在临水、临电区域安装防水、 绝缘设施,提升工程抵御自然灾害能力。改善施工现场环境, 运用系统化思维,科学规划和动态优化,以BIM技术对施 工场地进行三维建模、模拟分析, 对设备停放区、材料堆放 区、人员作业区和安全通道等进行合理规划,规避施工空间 资源冲突产生的交叉作业风险;采用模块化施工、装配式工 艺等先进方法,减少现场复杂作业环节,降低安全隐患。

结语

综上所述,未来,行业需持续重视安全管理,创新管理方式,强化责任落实,构建长效机制,确保电力工程施工安全高效,为社会发展筑牢电力根基。

参考文献:

- [1] 王志红.高压输电线路施工安全管理分析 [J]. 电力设备管理, 2022(23): 252-254.
- [2] 吴铭莉. 架空输电线路电气施工安全管理思考 [J]. 科技创新与应用, 2020(30): 183-184.
- [3] 谢禄波.浅谈如何解决电力安全生产管理的问题及措施[J].中国电子商务,2011(3):139-140.
- [4] 石金波. 探讨如何加强电力生产安全风险控制和基建安全管理水平 [J]. 电源技术应用, 2012(12): 210, 214.
- [5] 刘兴亚,孙海栋.超高压架空输电线路的工程建设分析[J].集成电路应用,2022,39(1):154-155.

作者简介:王真,出生年月:1986年10月8日,性别: 男,民族:汉,籍贯:山东省安丘市,学历:大学本科,职称:工程师,工作领域:大型火电项目总承包施工