

新疆开垦河枯季退水曲线分析与预报

琪美格

新疆维吾尔自治区水文分析计算中心 新疆乌鲁木齐 830000

摘 要: 开垦河发源于新疆东天山博格达山脉北坡, 开垦河水文站是其水量控制站。本文选用开垦河水文站 2000~2019年10月至次年2月月平均流量为退水过程, 用历年开始消退值三分位数分组法在SPSS上计算了枯季退水 曲线系数,并对2020年11月至次年2月月平均流量进行了预报,结果令人满意。 关键词: 开垦河: 枯季退水曲线分析

引言:

新疆枯季降雨稀少,河川径流主要由流域河网蓄水 和地下水混合补给,在由退水公式预报控制断面退水期 出流量时,退水曲线系数的取值是影响预报精度的关键 因素:用历年平均退水曲线系数,则因过度概化影响预 报精度;用与开始消退流量相近年份的退水曲线系数, 则因样本代表性差影响预报精度;用历年开始消退值多 年变幅分组法计得的相近分组退水曲线系数,则因样本 代表性不一致而影响预报精度;而用历年开始消退值三 分位数分组法计得的相近分组退水曲线系数,不存在样 本过度概化和代表性差的问题,因各组样本容量相同或 接近,保证了样本代表性的一致,从而有效提高预报精 度。

1 基本思路

开垦河水文站控制断面枯季流量过程一般呈稳定退 水态势,可用退水公式表示为:

 $Q_t = Q_0 * exp(-t/K_t)$

式中:t是退水时段(退水开始起顺次取0、1、2、…); Q,是退水时段t的流量;Q₀是开始消退流量;K_t是时段t 的退水曲线系数。

确定了 Q_0 和 K_t 值,便可由退水公式计算退水期任意 时段t的出流量 Q_t 。对于历年实测退水过程,可根据各 年的实测 Q_t 和 Q_0 ,由退水公式反推相应时段的 K_t 值。但 是,当用实测 Q_0 值来预报未知的 Q_t 时, K_t 应取何值呢? 用历年开始消退值三分位数分组法:

将历年同期开始消退流量 Q_0 排序,再用2个点将样本分为容量相同的三等份,与2个点对应的 Q_0 值称为第一、第二三分位数,分别记为 W_1 、 W_2 ,且 $W_1 < W_{2\circ}$ 如果 $Q_0 < W_1$ 则对应的退水过程属于第一组,位于 W_1 与 W_2 之间的属于第二组, $Q_0 > W_2$ 的属于第三组;接着计算各组不同退水时段t的组平均值 K_i ;最后判断用于预报的 Q_0 的组别,并取该组相应的组均值 K_i 来预报 Q_i 值,称之为历年开始消退值三分位数分组法^[1]。

2 枯季退水曲线分析计算

2.1 计算历年逐时段枯季退水曲线系数

开垦河水文站2000 ~ 2019年10月至次年2月月平 均流量SPSS数据文件见表1中的1 ~ 6列,可由SPSS生 成对应的逐年退水曲线系数序列:

序号	年份	十月平均 流量	十一月平 均流量	十二月平 均流量	次年一月 平均流量	次年二月 平均流量	K1	К2	К3	K4	分组变量
1	2000	2.40	1.76	1.52	1.29	1.06	3.2242	4.3787	4.8323	4.8948	1
2	2001	1.85	1.20	1.13	0.85	0.79	2.3102	4.0571	3.8575	4.7009	1
3	2002	1.62	1.20	1.00	0.91	0.82	3.3322	4.1457	5.2017	5.8748	1
4	2003	3.70	1.98	1.51	1.25	1.00	1.5994	2.2316	2.7645	3.0573	3
5	2004	1.95	1.37	1.36	0.96	0.89	2.8327	5.5502	4.2334	5.0997	1
6	2005	2.64	1.81	1.24	1.01	0.98	2.6493	2.6467	3.1223	4.0531	2
7	2006	1.63	1.23	0.98	0.78	0.77	3.5516	3.9310	4.0988	5.2878	1
8	2007	3.44	2.20	1.60	2.17	1.57	2.2371	2.6128	6.5112	5.0995	3

表1 逐年退水月平均流量、退水曲线系数与分组变量序列

序号	年份	十月平均 流量	十一月平 均流量	十二月平 均流量	次年一月 平均流量	次年二月 平均流量	K1	К2	К3	K4	分组变量
9	2008	3.90	2.15	1.66	1.09	0.81	1.6792	2.3415	2.3533	2.5490	3
10	2009	2.90	1.70	1.37	1.01	1.15	1.8724	2.6670	2.8442	4.3246	2
11	2010	1.89	1.34	1.18	0.89	1.01	2.9078	4.2457	3.9835	6.3834	1
12	2011	2.06	1.48	1.18	0.90	0.70	3.0242	3.5894	3.6229	3.7156	1
13	2012	2.12	1.13	1.04	1.02	0.98	2.5397	2.8082	4.1005	5.1839	1
14	2013	2.49	2.02	1.73	1.28	1.19	4.7805	5.4921	3.5084	5.4176	2
15	2014	2.87	1.72	1.31	1.17	1.27	1.9532	2.5501	3.3433	4.9062	2
16	2015	4.01	2.81	2.15	1.46	1.33	2.8121	3.2086	2.9693	3.6245	3
17	2016	2.62	1.95	1.54	1.55	1.64	3.3859	3.7637	5.7152	8.5383	2
18	2017	2.07	1.62	1.22	1.33	1.26	4.0796	3.7829	6.7817	8.0574	1
19	2018	2.53	2.07	1.78	1.39	1.09	4.9833	5.6882	5.0091	4.7504	2
20	2019	2.99	1.63	1.38	1.42	1.40	1.6483	2.5867	4.0289	5.2715	2

 打开SPSS数据文件,依次单击菜单"转换→计 算变量",在弹出的对话框目标变量框内输入"K₁",在 数字表达式框内输入"1/(LN(十月月平均流量)-LN (十一月月平均流量))",单击"确定"按钮,生成对 应11月月平均流量的退水曲线系数序列,见图1、图 2"K₁"列。

2: 同理, 将目标变量依次改为"K₂"、"K₃"、"K₄", 将数字表达式中"1"依次改为"2"、"3"、"4",将 "十一月月平均流量"改为"十二月月平均流量"、"次 年一月月平均流量"、"次年二月月平均流量",分别单击 "确定"按钮,生成对应12月、次年1月、次年2月月平 均流量的退水曲线系数序列,见图1、图2"K₂"、"K₃"、 "K₄"列^[2]。

2.2构建分组变量

可由 SPSS 计得历年开始消退流量 Q₀的第一三分位数 W₁和第二三分位数 W₂:

(1)在图1中依次单击菜单"分析→描述统计→频率",从弹出的对话框左侧框中选择"十月月平均流量",移入右侧变量框。

(2)单击"统计量"按钮,从弹出的对话框中选择
"割点",在其右侧框内输入"3",单击"继续"按钮,返回原对话框,取消"显示频率表格"选项,单击"确定"按钮,得到W₁、W₂统计描述结果:W₁=2.45m³/s,W₂=3.01m³/s。

根据前文约定的分组组别判断标准,可得到具体的组别判断标准: $Q_0 \le 2.45m^3/s$ 时,对应的退水过程属于第一组; $2.45m^3/s < Q_0 < 3.01m^3/s$ 时,属于第二组;

 Q_0 ≥3.01m³/s时,属于第三组。据此标准,可由SPSS生成分组变量:

 1)在图1中依次单击菜单"转换→重新编码为不同 变量",从弹出的对话框左侧框中选择"十月月平均流 量",移入输入变量→输出变量框,在右侧名称框内输入 "分组变量",单击"旧值和新值"按钮,弹出旧值和新 值对话框。

2) 在旧值选钮组中选择"范围,从最低到值",在 其下侧框内输入"2.45",在新值选钮组中选择"值", 在其右侧框内输入"1",单击"添加"按钮。同理,在 旧值选钮组中选择"范围",在其下侧两个框中分别输 入"2.45"和"3.01",在新值选钮组中选择"值",在其 右侧框内输入"2",单击"添加"按钮。同理,在旧值 选钮组中选择"范围,从值到最高",在其下侧框中输入 "3.01",在新值选钮组中选择"值",在其右侧框内输入 "3",单击"添加"按钮。

3)单击"继续"按钮,在返回的对话框中单击"更改"按钮,再单击激活的"确定"按钮,生成分组变量,见图1、图2的"分组变量"列。

2.3计算各组退水曲线系数组均值K_t

可由SPSS生成各组不同时段t的退水曲线系数组均值K_t:

 在图1中依次单击菜单"分析→报告→个案汇 总",从弹出的对话框左侧框中选择"K₁"、"K₂"、K₃"、 K₄",移入右侧变量框,选择"分组变量"移入分组变量 框,取消"显示个案"选项^[3]。

2: 单击"统计量"按钮,从弹出的对话框左侧框中

选择"均值",移入右侧框,单击"继续"按钮,返回原 对话框,单击"确定"按钮,生成各组不同时段退水曲 线系数组均值 K_i,可见具有如下特点:

(1)各组K_i值均非负,且总体均匀递增,说明退水 期水量呈递减态势。

(2) K₄反映了流域河网蓄水和地下水混合补给枯季 径流的汇流特性,其中,地下水补给权重大时,因补给 源稳定,K₄递增率小。由表1计得组1、2、3的K₄递增率 为30%、47%、41%,说明在补给源中,组1地下水补给 权重大,组2小,组3居中。

(3)各组样本容量相同或接近,保证了样本代表性的一致。

3 预报2020年11月至次年2月月平均流量Q_t

开垦河水文站2020年10月月平均流量是2.84m³/s (即 Q_0),根据组别判断标准,该值在2.45m³/s和3.01m³/s 之间,所以对应的退水过程属于第二组,K₁值见表1,依 次为2.9192、3.2210、3.5909、4.2962。 将Q₀和K₄值代入退水公式即可进行预报:取时段t为 1、2、3和4,得2020年11月至次年2月月平均流量是2.02、 1.53、1.23和1.12m³/s,实况是1.90、1.32、1.22和1.21m³/s, 相差6.3%、15.9%、0.82%和-7.43%,若相对误差的绝对 值≤20%为合格,则合格率为100%,结果令人满意。

4 结语

用历年开始消退值三分位数分组法在SPSS上计算枯 季退水曲线系数,并对其未来退水期流量过程进行预报, 丰富了枯季退水预报方法;详解的SPSS实现步骤,便于 在其它同类河流预报中推广使用。

参考文献:

[1]旦木仁加甫.中长期水文预报与SPSS应用.郑州: 黄河水利出版社,2011

[2]新疆水资源及可持续利用[M].中国水利水电出版 社,邓铭江[等]编著,2005

[3]新疆统计年鉴[M].中国统计出版社,新疆维吾尔 自治区统计局,2015