开放期刊系统

掺入竹灰的粉煤灰地聚合物混凝土在高温下的性能

李 贤民, 阿兹 林·, 诺哈 萨娜, 林 汉升

摘要

本文介绍了掺入竹灰的粉煤灰地聚合物混凝土在所需温度(200℃ ~800℃)下的实验结果。本文研究了不同
量的竹灰,并将粉煤灰地聚合物混凝土作为对照样品,用氢氧化钠和硅酸钠溶液合成了地聚合物,测定了超声脉冲
速度,重量损失和残余抗压强度,并使用两种不同的冷却方法(即风冷(AC)和水冷(WC)状态)测试所有样品。
这些测试的结果表明,在粉煤灰中加入 5%的竹灰,与对照样品相比,在 800℃时,地聚合物在AC和WC中残留强度
分别提高了 5MPa(53%)和 5.65MPa(66%),并且分别提高了 940m/s(76%)和 727m/s(53%)。因此,当竹灰面临
高温时,它可以成为地聚合物混凝土的替代品之一。

关键词

粉煤灰;竹灰;补充材料;土聚合物混凝土;高温


参考

[1]Ahmad MH, Omar RC, Malek MA, et al. Compressive

Strength of Palm Oil Fuel Ash Concrete. In Proceedings of

the International Conference on Construction and Building

Technology, Kuala Lumpur, Malaysia. 2008; 27: pp. 297–306.

[2]Habeeb GA, Mahmud HB. Study on Properties of Rice

Husk Ash and Its Use as Cement Replacement. Mater. Res.

2010; 13: 185–190.

[3]Kartini K. Rice Husk Ash-Pozzolanic Material for

Sustainability. Int. J. Appl. Sci. Technol. 2011; 1: 169–178.

[4]Kawabata CY, Junior HS, Sousa-coutinho J. Rice Husk

Ash derived Waste Materials as Partial Cement Replacement

in Lighweight Concrete. Agric. Eng. 2012; 36: 26–31.

[5]Ranjbar N, Mehrali M, Alengaram UJ, et al.

Compressive strength and microstructural analysis of fly ash/

palm oil fuel ash based geopolymer mortar under elevated

temperatures. Constr. Build. Mater. 2014; 65: 114–121.

[6]Ranjbar N, Kuenzel C. Influence of preheating of fly

ash precursors to produce geopolymers. J. Am. Ceram. Soc.

2017; 100: 3165–3174.

[7]Behzad N, Jay S. Effect of different superplasticizers

and activator combinationson workability and strength of fly

ash based geopolymer. Mater. Des. 2014; 57: 667–672.

[8]Huseien GF, Ismail M, Tahir M, et al. Effect of Binder

to Fine Aggregate Content on Performance of Sustainable

Alkali Activated Mortars Incorporating Solid Waste Materials.

Chem. Eng. Trans. 2018; 63: 667–672.

[9]Shen P, Lu L, He Y, et al. Investigation on expansion

effect of the expansive agents in ultra-high-performance

concrete. Cem. Concr. Compos. 2020; 105: 103425.

[10]Zhang X, Zhao S, Liu Z, et al. Utilization of steel

slag in ultra-high-performance concrete with enhanced ecofriendliness. Constr. Build. Mater. 2019; 214: 28–36.

[11]Liang X, Wu C, Yang Y, et al. Coupled effect of

temperature and impact loading on tensile strength of ultrahigh performance fibre reinforced concrete. Compos. Struct.

2019; 229: 111432.

[12]Kim S, Yoo DY, Kim MJ, et al. Self-healing

capability of ultra-high-performance fiber-reinforced concrete

after exposure to cryogenic temperature. Cem. Concr. Compos.

2019; 104: 103335.

Refbacks

  • 当前没有refback。